Skip to main content

Mathematical Modeling of Filtration Processes in Porous Media

  • Chapter
  • First Online:
  • 1147 Accesses

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The current variety of filtration theories suggests that the porous medium and the fluid filling it form some continuous medium. That is, the elements of the porous medium-fluid system, though considered physically infinitesimal, however, are large enough compared to the size of pores and particles (grains, fibers) forming a porous medium. Averaged characteristics of the porous medium, which are introduced for mathematical description, may be sufficiently substantiated only for the volume with a large number of enclosed pores and particles. In terms of the elementary theory of filtration, the meaning of the solid skeleton of the porous medium is, above all, geometric—the skeleton limits the region of space in which the fluid moves. In more complex cases, we have seen strong interaction between the skeleton and the adjacent layers of the fluid. Therefore, the properties of the porous medium in the theory of filtration are usually described by a set of geometric averages. In this chapter, several cell models are considered for calculation of hydrodynamic permeability of porous media. It is assumed that porous media in general may consist of partially porous spherical or cylindrical particles. Different limiting cases are investigated and theoretical results are compared with experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Happel J, Brenner H (1965) Low Reynolds number hydrodynamics with special applications to particulate media. Prentice-Hall, Englewood Cliffs (reprinted by Wolters-Nordhoff, 1973); paperback edition, (Martinus Nijhoff; Kluwer Academic Publishers, 1983)

    Google Scholar 

  2. Barenblatt GI, Entov VM, Ryzhik VM (1990) Theory of fluid flows through natural rocks. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  3. Whitaker S (1986) Transp Porous Med 1:3

    Article  Google Scholar 

  4. Auriault J-L (2009) Transp Porous Med 79:215

    Article  MathSciNet  Google Scholar 

  5. Brinkman HC (1947) Appl Sci Res A1:27

    Google Scholar 

  6. Starov VM, Zhdanov VG (2008) Adv Colloid Interface Sci 137:2

    Article  Google Scholar 

  7. McHale G, Newton MI, Shirtcliffe NJ (2010) Soft Matter 6:714

    Article  Google Scholar 

  8. Qin Yu, Kaloni PN, Angew Z (1993) Math Mech 73:77

    MATH  Google Scholar 

  9. Greenkorn RA (1983) Flow phenomena in porous media: fundamentals and applications in petroleum, water, and food production. Marcel Dekker, New York

    Google Scholar 

  10. Zholkovskij EK, Masliyah JH, Shilov VN, Bhattacharjee S (2007) Adv Colloid Interface Sci 134–135:279

    Article  Google Scholar 

  11. Kotov AA, Solomentsev YuE, Starov VM (1991) Prog Colloid Polym Sci 84:293

    Article  Google Scholar 

  12. Kotov AA, Solomentsev YuE, Starov VM (1991) Colloid J 53(6):867

    Google Scholar 

  13. Kotov AA, Solomentsev YuE, Starov VM (1992) Int J Multiph Flow 18(5):739

    Article  MATH  Google Scholar 

  14. Churaev N, Sergeeva I, Derjaguin B (1981) J Colloid Interface Sci 84:451

    Article  Google Scholar 

  15. Churaev NV, Kotov AA, Solomentsev YuE, Starov VM (1991) Prog Colloid Polym Sci 84:290

    Article  Google Scholar 

  16. Solomentsev YuE, Starov VM (1993) Colloid J 54(4):591

    Google Scholar 

  17. Starov VM, Solomentsev YuE (1993) J Colloid Interface Sci 158:159

    Article  Google Scholar 

  18. Starov VM, Solomentsev YuE (1993) J Colloid Interface Sci 158:166

    Article  Google Scholar 

  19. Varoqui R, Dejardin P (1977) J Chem Phys 66:4395

    Article  Google Scholar 

  20. Hiller J, Hoffman H (1953) J Comp Physiol 42:203

    Google Scholar 

  21. Parsons D, Subjeck J (1972) Biochem Biophys Acta 55:440

    Google Scholar 

  22. Masliyah J, Neale G, Malysa K, van de Ven T (1987) Chem Eng Sci 42:245

    Article  Google Scholar 

  23. Garvey M, Tadros Th, Vincent B (1975) J Colloid Interface Sci 55:440

    Article  Google Scholar 

  24. Pefferkorn E, Dejardin P, Varoqui R (1975) J Colloid Interface Sci 63:353

    Article  Google Scholar 

  25. Idol WK, Anderson JL (1986) J Membr Sci 28(3):269

    Article  Google Scholar 

  26. Anderson JL, Kim J (1987) J Chem Phys 86:5163

    Article  Google Scholar 

  27. Perepelkin PV, Starov VM, Filippov AN (1992) Colloid J 54(2):139

    Google Scholar 

  28. Vasin SI, Starov VM, Filippov AN (1996) Colloid J 58(3):291

    Google Scholar 

  29. Vasin SI, Filippov AN (2004) Colloid J 66(3):261

    Article  Google Scholar 

  30. Vasin SI, Starov VM, Filippov AN (1996) Colloid J 58(3):282

    Google Scholar 

  31. Filippov AN, Vasin SI, Starov VM (2006) Colloids Surf A: Physicochem Eng Aspects 282–283:272

    Article  Google Scholar 

  32. Vasin SI, Filippov AN, Starov VM (2008) Adv Colloid Interface Sci 139:83

    Article  Google Scholar 

  33. Koplic J, Levine H, Zee A (1983) Phys Fluids 26(10):2864

    Article  Google Scholar 

  34. Kuwabara S, Rhys J (1959) Soc Jpn 14:527

    Article  Google Scholar 

  35. Kvashnin AG (1979) Izv Akad Nauk SSSR (Proceedings of the Academy of Sciences of the USSR), Mekh Zhidk Gaza (Mechanics of Liquid and Gas) 4, 154 (in Russian)

    Google Scholar 

  36. Mehta G, Morse T (1975) J Chem Phys 63(5):1877

    Article  Google Scholar 

  37. Cunningham E (1910) Proc R Soc (London) A83:357

    Article  Google Scholar 

  38. Vasin SI, Filippov AN (2009) Colloid J 71(1):31

    Article  Google Scholar 

  39. Vasin SI, Filippov AN (2009) Colloid J 71(2):141

    Article  Google Scholar 

  40. de Groot S, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  41. Kirsh VA (2006) Colloid J 68(2):173

    Article  Google Scholar 

  42. Sergeeva IP, Semenov DA, Sobolev VD, Churaev NV (2008) Colloid J 70(5):616

    Article  Google Scholar 

  43. Churaev NV, Sobolev VD, Somov AN (1984) J Colloid Interface Sci 97:574

    Article  Google Scholar 

  44. Filippov AN, Khanukaeva DYu, Vasin SI, Sobolev VD, Starov VM (2013) Colloid J 75(2):214

    Article  Google Scholar 

  45. Kiseleva OA, Sobolev VD, Semenov DA, Ershov AP, Sergeeva IP, Churaev NV (2009) Colloid J 71(1):76

    Article  Google Scholar 

  46. Yadav PK, Tiwari A, Deo S, Filippov A, Vasin S (2010) Acta Mech 215:193

    Article  MATH  Google Scholar 

  47. Deo S, Filippov A, Tiwari A, Vasin S, Starov V (2011) Adv Colloid Interface Sci 164:21

    Article  Google Scholar 

  48. Ivanov VI (2011) Vestnik Nizhegorodskogo universiteta imeni N.I.Lobachevskogo. Mehanika zhidkosti i gaza (Vestnik of Lobachevsky State University of Nizhny Novgorod, Mechanics of Liquid and Gas) 4(2), 438 (in Russian)

    Google Scholar 

  49. Brock TD (1983) Membrane filtration: a user’s guide and reference manual. Science Tech, Madison

    Book  Google Scholar 

  50. Kemmer FN (ed) (1987) The NALCO water handbook, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  51. Cohen RD, Probstein RF (1986) J Colloid Interface Sci 114:194

    Article  Google Scholar 

  52. Schulz G, Ripperger S (1989) J Membrane Sci 40:173

    Article  Google Scholar 

  53. Suki A, Fane AG, Fell CJD (1986) J Membrane Sci 27:181

    Article  Google Scholar 

  54. Howell JA, Velicangil O, Lee MS, Herrera-Zeppelin AL (1981) Ann NY Acad Sci 369:355

    Article  Google Scholar 

  55. Yasminov AA, Grekov AV, Gaidukova IP et al (1988) Vysokochist. Veshchestva (High-Purity Substances) 1, 110 (in Russian)

    Google Scholar 

  56. Persson KM, Nilsson JL (1991) Desalination 80(2–3):123

    Article  Google Scholar 

  57. Hubble J (1989) Fouling and cleaning in food processing.In: Kessler HG, Lund DB (eds) Third international conference on fouling and cleaning in food processing, Prien, Bavaria, June 1989. p 239

    Google Scholar 

  58. Aimar P, Meireles M, Sanchez V (1990) J Membrane Sci 54(3):321

    Article  Google Scholar 

  59. Meireles M, Aimar P, Sanchez V (1991) J Membrane Sci 56(1):13

    Article  Google Scholar 

  60. Fan LT, Nassan R, Hwang SH, Chou ST (1985) AIChE J 1781

    Google Scholar 

  61. Fan LT, Hwang SH, Chou ST, Nassan R (1985) Chem Eng Commun 35:101

    Article  Google Scholar 

  62. Polotskii AE, Cherkasov AN (1983) Colloid J 43:467

    Google Scholar 

  63. Cherkasov AN (1985) Colloid J 47:363

    Google Scholar 

  64. Cherkasov AN, Vlasova OL, Tsareva SV et al (1990) Colloid J 52:323

    Google Scholar 

  65. Kutepov AM, Sokolov MV (1986) Teor Osn Khim Tekhnol (Theoretical Foundations of Chemical Engineering) 19:123

    Google Scholar 

  66. Filippov AN, Starov VM, Gleizer SV, Yasminov AA (1990) Khim Tekhnol Vody (Water Chemistry and Technology) 12:483 (in Russian)

    Google Scholar 

  67. Torkunov AM, Filippov AN, Starov VM (1992) Colloid J 54:126

    Google Scholar 

  68. Filippov AN, Starov VM, Lloyd DR et al (1994) J Membr Sci 89:199

    Article  Google Scholar 

  69. Starov V, Lloyd D, Filippov A, Glaser S (2001) Sep Purif Technol 26:51

    Article  Google Scholar 

  70. Filippov AN, Iksanov RKh (2012) Petrol Chem 52(7):520

    Article  Google Scholar 

  71. Brenner H (1961) Chem Eng Sci 16:242

    Article  Google Scholar 

  72. Goldmann AJ, Cox RG, Brenner H (1967) Chem Eng Sci 22:637

    Article  Google Scholar 

  73. Goldmann AJ, Cox RG, Brenner H (1967) Chem Eng Sci 22:653

    Article  Google Scholar 

  74. Liu MK, Williams FA (1970) Int J Heat Mass Transfer 13:1441

    Article  Google Scholar 

  75. Trettin DR, Doshi MK (1980) Ind Eng Chem Fundam 19:189

    Article  Google Scholar 

  76. Blatt WF, Dravid A, Michaels AS, Nelsen L(1970) Membrane science and technology. In: Flinn JE (ed). Plenum, New York, p 47

    Google Scholar 

  77. Opong WS, Zydney AI (1991) AIChE J 37:1497

    Article  Google Scholar 

  78. Starov VM, Churaev NV (1993) Adv Colloid Interface Sci 43:145

    Article  Google Scholar 

  79. Kolmogorov AN (1941) Dokl Akad Nauk SSSR 31:99

    Google Scholar 

Download references

Acknowledgment

The support of Russian Science Foundation (RSF) is acknowledged (grant No 14-19-01045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Nikolaevich Filippov .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Filippov, A.N. (2014). Mathematical Modeling of Filtration Processes in Porous Media. In: Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-6377-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6377-0_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6376-3

  • Online ISBN: 978-1-4471-6377-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics