Skip to main content

Pharmacology in the PICU

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Rational drug therapy requires the application of pharmacologic principles to maximize efficacy while minimizing adverse reactions. In the setting of the Pediatric Intensive Care Unit (PICU), drug therapy is predicated on an understanding of the pathophysiology of the disease being treated, the pharmacology of the drug(s) selected and the expected effects (therapeutic and toxic) of the chosen agents. An understanding of how disease processes, genetics and other concurrent treatments affect the pharmacologic properties of drugs is also paramount to a rational approach to drug therapy. Two therapeutic strategies, target effect and target concentration are commonly employed when administering medications to treat specific diseases.

Pharmacokinetics describe the processes of drug absorption, distribution, biotransformation, and excretion; what the body does to a drug. Pharmacodynamics describe the relationship between a drug’s concentration at its site of action and its effect; what a drug does to the body. Pharmacokinetics and Pharmacodynamics may be influenced by developmental changes, interactions with other drugs or nutrients, disease states, and genetic influences such as polymorphisms.

Drug interactions can be classified as drug-drug, drug-disease, or drug-food interactions. The mechanism can be divided into pharmaceutical, pharmacokinetic or pharmacodynamic interactions. The most serious drug interactions involve drugs with severe toxicities and a narrow therapeutic index.

Medication errors are a common cause of adverse drug reactions and have unfortunately been associated with fatalities in too many cases.

This chapter reviews basic pharmacologic principles and their bedside application to provide a guide for safe and rational drug therapy in caring for the critically ill child.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilkinson GR. Pharmacokinetics - the dynamics of drug absorption, distribution, and elimination. In: Hardman JG, Limbard LE, Gilman AG, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 3–29.

    Google Scholar 

  2. Ross EM, Kenakin TP. Pharmacodymanics - mechanism of drug action and the relationship between drug concentration and effect. In: Hardman JG, Limbard LE, Gilman AG, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 31–43.

    Google Scholar 

  3. Spivey WH. Intraosseous infusions. J Pediatr. 1987;111:639–43.

    Article  CAS  PubMed  Google Scholar 

  4. Malinovsky JM, Lejus C, Servin F, et al. Plasma concentrations of midazolam after IV, nasal or rectal administration in children. Brit J Anaesth. 1993;70:617–20.

    Article  CAS  PubMed  Google Scholar 

  5. Kanto J. Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy. 1985;5:138–55.

    CAS  PubMed  Google Scholar 

  6. Taylor MB, Vine PR, Hatch DJ. Intramuscular midazolam premedication in young children. Anaesthesia. 1986;41:21–6.

    Article  CAS  PubMed  Google Scholar 

  7. Chiaretti A, Barone G, Rigante D, et al. Intranasal lidocaine and midazolam for procedural sedation in children. Arch Dis Child. 2011;96:160–3.

    Article  PubMed  Google Scholar 

  8. Holsti M, Dudley N, Schunk J, et al. Intranasal midazolam vs rectal diazepam for the home treatment of acute seizures in pediatric patients with epilepsy. Arch Pediatr Adolesc Med. 2010;164:747–53.

    Article  PubMed  Google Scholar 

  9. Bhattacharyya M, Kalra V, Gulati S. Intranasal midazolam vds rectal diazepam in acute childhood seizures. Pediatr Neurol. 2006;34:355–9.

    Article  PubMed  Google Scholar 

  10. Allegaert K, van den Anker JN, Naulaers G, et al. Determinants of drug metabolism in early neonatal life. Curr Clin Pharmacol. 2007;2:23–9.

    Article  CAS  PubMed  Google Scholar 

  11. Mouly S, Meune C, Bergmann J-F. Mini-series. Basic science. Uncertainty and inaccuracy of predicting CYP-mediated in vivo drug interactions in the ICU from in vitro models: focus on CYP3A4. Intensive Care Med. 2009;35:417–29.

    Article  PubMed  Google Scholar 

  12. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology- drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67.

    Article  CAS  PubMed  Google Scholar 

  13. Reed MD, Besunder JB. Developmental pharmacology: ontogenic basis of drug disposition. Pediatr Clin N Am. 1989;36:1053–74.

    CAS  Google Scholar 

  14. Besunder JB, Reed MD, Blumer JL. Principles of drug biodisposition in the neonate: a critical evaluation of the pharmacokinetic-pharmacodynamic interface. Clin Pharmacokinet. 1988;14:189–216, 261–86.

    Article  CAS  PubMed  Google Scholar 

  15. Agunod M, Yomaguchi N, Lopez R, et al. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis. 1969;14:400–14.

    Article  CAS  PubMed  Google Scholar 

  16. Friis-Hansen B. Water distribution in the foetus and newborn infant. Acta Paediatr. 1983;305(Suppl):7–11.

    Article  CAS  Google Scholar 

  17. Radde IC. Drugs and protein binding. In: MacLeod SM, Radde IC, editors. Textbook of pediatric pharmacology. Littletown: PSG Publishing Co; 1985. p. 34.

    Google Scholar 

  18. Park MK, Ludden T, Arom KV, et al. Myocardial vs serum digoxin concentrations in infants and adults. Am J Dis Child. 1982;136:418–20.

    CAS  PubMed  Google Scholar 

  19. Gorodischer R, Jusko WJ, Yaffe S. Tissue and erythrocyte distribution of digoxin in infants. Clin Pharmacol Ther. 1976;19:256–63.

    CAS  PubMed  Google Scholar 

  20. Leeder JS, Kearns GL, Spielberg SP, et al. Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science. J Clin Pharmacol. 2010;50:1377–87.

    Article  PubMed  Google Scholar 

  21. DeWildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37:485–505.

    Article  CAS  Google Scholar 

  22. Anderson GD, Lynn AM. Optimizing pediatric dosing: a developmental pharmacologic approach. Pharmacotherapy. 2009;29:680–90.

    Article  CAS  PubMed  Google Scholar 

  23. Sumpter A, Anderson BJ. Pediatric pharmacology in the first year of life. Curr Opin Anaesthesiol. 2009;22:469–75.

    Article  PubMed  Google Scholar 

  24. Alam SN, Robert RJ, Fischer LJ. Age-related differences in salicylamide and acetaminophen conjugation in man. J Pediatr. 1977;90:130–5.

    Article  CAS  PubMed  Google Scholar 

  25. Miller RP, Roberts RJ, Fischer LJ. Acetaminophen elimination kinetics in neonates, children, and adults. Clin Pharmacol Ther. 1976;19:284–94.

    CAS  PubMed  Google Scholar 

  26. Arant Jr BS. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr. 1978;92:705–12.

    Article  CAS  PubMed  Google Scholar 

  27. Leake RD, Trygstad CW. Gomerular filtration rate during the period of adaptation to extrauterine life. Pediatr Res. 1977;11:959–62.

    Article  CAS  PubMed  Google Scholar 

  28. West JR, Smith HW, Chasis H. Glomerular filtration rate, effective renal blood flow and maximal tubular excretory capacity in infancy. J Pediatr. 1948;32:10–8.

    Article  CAS  PubMed  Google Scholar 

  29. Leeder JS, Kearns GL. Pharmacogenetics in pediatrics. Pediatr Clin North Am. 1997;44:55–77.

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364:1144–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wilkinson GR. Drug metabolism and variability among patients in drug response. New Engl J Med. 2005;352:2211–21.

    Article  CAS  PubMed  Google Scholar 

  32. Sindrup SH, Brosen K. The pharmacogentics of codeine hypoalgesia. Pharmacogenetics. 1995;5:335–46.

    Article  CAS  PubMed  Google Scholar 

  33. Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med. 2009;361:827–8.

    Article  CAS  PubMed  Google Scholar 

  34. Madadi M, Koren G, Cairns J, et al. Safety of codeine during breastfeeding. Fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam Physician. 2007;53:33–5.

    PubMed Central  PubMed  Google Scholar 

  35. Brandolese R, Scordo MG, Spina E, et al. Severe phenytoin intoxication in a subject homozygous for CYP2C9*3. Clin Pharmacol Ther. 2001;70:391–4.

    CAS  PubMed  Google Scholar 

  36. Epstein RS, Moyer TP, Aubert RE, O’Kane DJ, Xia F, Verbrugge RR, Gage BF, Teagarden JR. Warfarin genotyping reduces hospitalization rates. J Am Cool Cardiol. 2010;55:2804–12.

    Article  CAS  Google Scholar 

  37. Kitzmiller JP, Groen DK, Phelps MA, Sadee W. Pharmacogenomic testing: relevance in medical practice why drugs work in some patients but not others. Cleve Clin J Med. 2011;78:243–57.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Tantisira KG, Lasky-Su J, Harada M, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med. 2011;365(13):1173–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Madadi P, Hildebrandt D, Gong IY, Schwartz UI, Ciszkowski C, Ross CJD, Sistonen J, Carelton BC, Hayden MR, Lauwers AE, Koren G. Fatal hydrocone overdose in a child: pharmacogenetics and drug interactions. Pediatrics. 2010;126:e986–9.

    Article  PubMed  Google Scholar 

  40. Gijsen V, Mital S, van Schaik RH, Soldin OP, van der Heiden IP, Nulman I, Koren G, de Wildt SN. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients. J Heart Lung Transplant. 2011;30(12):1352–9.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Ishizaki T, Kubo M. Incidence of apparent Michaelis-Menten behavior of theophylline and its parameters (Vmax and Km) among asthmatic children and adults. Ther Drug Monit. 1987;9:11–20.

    Article  CAS  PubMed  Google Scholar 

  42. Carcillo JA, Fields AI, American College of Critical Care Medicine Task force Committee Members. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med. 2002;30:1365–78.

    Article  PubMed  Google Scholar 

  43. Reed MD, Blumer JL. Therapeutic drug monitoring in the pediatric intensive care unit. Pediatr Clin North Am. 1994;41:1227–43.

    CAS  PubMed  Google Scholar 

  44. Kozer E, Parvez S, Minassian BA, et al. How high can we go with phenytoin? Ther Drug Monit. 2002;24:386–9.

    Article  CAS  PubMed  Google Scholar 

  45. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66:82–98.

    Article  CAS  PubMed  Google Scholar 

  46. Moura C, Prado N, Acurcio F. Potential drug-drug interactions associated with prolonged stays in the intensive care unit. Clin Drug Investig. 2011;31:309–16.

    Article  CAS  PubMed  Google Scholar 

  47. Johannessen Landmark C, Patsalos PN. Drug interactions involving the new second and third generation antiepileptic drugs. Expert Rev Neurother. 2010;10:119–40.

    Article  CAS  PubMed  Google Scholar 

  48. Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61:246–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Smithburger PL, Seybert AL, Armahizer MJ, et al. QT prolongation in the intensive care unit: commonly used medications and the impact of drug-drug interactions. Expert Opin Drug Saf. 2010;9:699–712.

    Article  CAS  PubMed  Google Scholar 

  50. Reuning RH, Geraets DR, Rocci ML, et al. Digoxin. In: Schentag JJ, Evans WE, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. 3rd ed. Vancouver: Applied Therapeutics Inc; 1992. p. 20–48.

    Google Scholar 

  51. Wadhwa NK, Schroeder TJ, O’Flaherty E, et al. The effect of oral metoclopramide on the absorption of cyclosporine. Transplant Proc. 1987;19:1730–3.

    CAS  PubMed  Google Scholar 

  52. Hall TG, Cuddy PG, Glass CJ, et al. Effect of sucralfate on phenytoin bioavailability. Drug Intell Clin Pharm. 1986;20:607–11.

    CAS  PubMed  Google Scholar 

  53. Nix DE, Watson WA, Handy L, et al. The effect of sucralfate pretreatment on the pharmacokinetics of ciprofloxacin. Pharmacotherapy. 1989;9:377–80.

    CAS  PubMed  Google Scholar 

  54. Carter BL, Garnett WR, Pellock JM, et al. Effect of antacids on phenytoin bioavailability. Ther Drug Monit. 1981;3:333–40.

    Article  CAS  PubMed  Google Scholar 

  55. Sadowski DC. Drug interactions with antacids, mechanisms and clinical significance. Drug Saf. 1994;11:395–407.

    Article  CAS  PubMed  Google Scholar 

  56. Linday L, Dobkin JF, Wang TC, et al. Digoxin inactivation by the gut flora in infancy and childhood. Pediatrics. 1987;79:544–8.

    CAS  PubMed  Google Scholar 

  57. Spriet I, Goyens J, Meersseman W, et al. Interaction between valproate and meropenam: a retrospective review. Ann Pharmacother. 2007;41:1130–6.

    Article  CAS  PubMed  Google Scholar 

  58. Mancl EE, Gidal BE. The effect of carbapenam antibiotics on plasma concentrations of valproic acid. Ann Pharmacother. 2009;43:2082–7.

    Article  CAS  PubMed  Google Scholar 

  59. Tsanaclis LM, Perucca AE, Routledge PA, Richens A. Effect of valproate on free plasma phenytoin concentrations. Br J Clin Pharmacol. 1984;18:17–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Davis RL, Berman W, Wernly JA, Kelly HW. Warfarin-nafcillin interaction. J Pediatr. 1991;118:300–3.

    Article  CAS  PubMed  Google Scholar 

  61. Nivoix Y, Ubeaud-Sequier G, Engel P, Leveque D, Herbrecht R. Drug-drug interactions of triazole antifungal agents in multimorbid patients and implications for patient care. Curr Drug Metab. 2009;10:395–409.

    Article  CAS  PubMed  Google Scholar 

  62. Janes J, Routledge PA. Recent developments in the management of paracetamol (acetaminophen) poisoning. Drug Saf. 1992;7:170–7.

    Article  CAS  PubMed  Google Scholar 

  63. Brouwers JRBJ, de Snet AGM. Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs. Clin Pharmacokinet. 1994;27:462–85.

    Article  CAS  PubMed  Google Scholar 

  64. Kosoglou T, Valasses PH. Drug interactions involving renal transport mechanisms: an overview. Ann Pharmacother. 1989;23:116–22.

    CAS  Google Scholar 

  65. Nies AS. Principles of therapeutics. In: Hardman JG, Limbard LE, Gilman AG, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 45–66.

    Google Scholar 

  66. Boyer EW, Shannon M. The serotonin syndrome. New Engl J Med. 2005;352:1112–20.

    Article  CAS  PubMed  Google Scholar 

  67. Ables AZ, Nagubilli R. Prevention diagnosis, and management of serotonin syndrome. Am Fam Physician. 2010;81:1139–42.

    PubMed  Google Scholar 

  68. Steinberg M, Morin AK. Mild serotonin syndrome associated with concurrent linezolid and fluoxetine. Am J Health Syst Pharm. 2007;64:59–62.

    Article  PubMed  Google Scholar 

  69. Lee DO, Lee CD. Serotonin syndrome in a child associated with erythromycin and sertraline. Pharmacotherapy. 1999;19:894–6.

    Article  CAS  PubMed  Google Scholar 

  70. Siniscalchi A, Gallelli L, De Fazio S, et al. Psychic disturbances associated with sodium valproate plus levetiracetam. Ann Pharmacother. 2007;41:527–8. letter.

    Article  PubMed  Google Scholar 

  71. Wadzinski J, Franks R, Roane D, et al. Valproate-associated hyperammonemic encephalopathy. J Am Board Fam Med. 2007;20:499–502.

    Article  PubMed  Google Scholar 

  72. Soriano SG, Jeevendra Martyn JA. Antiepileptic-induced resistance to neuromuscular blockers: mechanisms and clinical significance. Clin Pharmacokinet. 2004;43:71–81.

    Article  CAS  PubMed  Google Scholar 

  73. Buck ML, Michel RS. Talking with families about herbal therapies. J Pediatr. 2000;136:673–8.

    Article  CAS  PubMed  Google Scholar 

  74. Williamson E. Drug interactions between herbal and prescription medicines. Drug Saf. 2003;26:1075–92.

    Article  CAS  PubMed  Google Scholar 

  75. Huang SM, Hall SD, Watkins P, Love LA, Serabjit-Singh C, Betz JM, et al. Drug interactions with herbal products and grapefruit juice: a conference report. Clin Pharmacol Ther. 2004;75:1–12.

    Article  PubMed  Google Scholar 

  76. Henderson L, Yue QY, Bergquist C, Gerden B, Arlett P. St. John’s wort (Hypericum perforatum): drug interactions and clinical outcomes. Br J Clin Pharm. 2002;54:349–56.

    Article  CAS  Google Scholar 

  77. Ernst E. Second thoughts about safety of SJW. Lancet. 1999;354:2014–6.

    Article  CAS  PubMed  Google Scholar 

  78. Yue QY, Bergquist C, Gerden B. Safety of St John’s wort. Lancet. 2000;355:576–7.

    Article  CAS  PubMed  Google Scholar 

  79. Barone GW, Gurley BJ, Ketel BL, Lightfoot ML, Abul-Ezz SR. Drug interaction between St John’s wort and cyclosporine. Ann Pharmacother. 2000;34:1013–6.

    Article  CAS  PubMed  Google Scholar 

  80. Mai I, Kruger H, Budde K, et al. Hazardous pharmacokinetic interaction of Saint John’s wort (Hypericum perforatum) with the immunosuppressant cyclosporine. Int J Clin Pharmacol Ther. 2000;38:500–2.

    Article  CAS  PubMed  Google Scholar 

  81. Bilgi N, Bell K, Ananthakrischnan AN, Atallah E. Imatinib and panex ginseng: a potential interaction resulting in liver toxicity. Ann Pharmacother. 2010;44:926–8.

    Article  PubMed  Google Scholar 

  82. Gardner P, Phillips R, Shaughnessy AF. Herbal and dietary supplement-drug interactions in patients with chronic illnesses. Am Fam Physician. 2008;78:808.

    Google Scholar 

  83. Javed F, Golagani A, Sharp H. Potential effects of herbal medicines and nutritional supplements on coagulation in ENT practice. J Laryngol Otol. 2008;122:116–9.

    Article  CAS  PubMed  Google Scholar 

  84. Chicella M, Jansen P, Parthiban A, et al. Propylene glycol accumulation associated with continuous infusion of lorazepam in pediatric intensive care patients. Crit Care Med. 2002;30:2752–6.

    Article  CAS  PubMed  Google Scholar 

  85. Glasgow AM, Boeckx RL, Miller MK, MacDonald MG, August GP. Hyperosmolality in small infants due to propylene glycol. Pediatrics. 1983;72:353–5.

    CAS  PubMed  Google Scholar 

  86. Committee on Fetus and Newborn. Benzyl alcohol: toxic agent in neonatal units. Pediatrics. 1983;72:356–8.

    Google Scholar 

  87. Trissel LA. Handbook on injectable drugs. 11th ed. Bethesda: American Society of Health-System Pharmacists, Inc.; 2001.

    Google Scholar 

  88. Trissel LA, Leissing NC. Trissel’s tables. Chicago: Multimatrix, Inc.; 1996.

    Google Scholar 

  89. Wedekind CA, Fidler BD. Compatibility of commonly used intravenous infusions in a pediatric intensive care unit. Crit Care Nurse. 2001;214:45–51.

    Google Scholar 

  90. Farrington E, Adcock K. Y-site drug compatibility with TPN. Pharmacy Practice News. 1997 May:49–51.

    Google Scholar 

  91. Catania PN. Critical care admixtures wall chart. In: King JC, Catania PN, editors. King guide to parenteral admixtures. Napa, CA: King Guide Publications, Inc; 2002.

    Google Scholar 

  92. Williams NT. Medication administration through enteral feeding tubes. Am J Health Syst Pharm. 2008;65:2347–57.

    Article  CAS  PubMed  Google Scholar 

  93. Wohlt PD, Zheng L, Gunderson S, et al. Recommendations for the use of medications with continuous enteral nutrition. Am J Health Syst Pharm. 2009;66:1458–67.

    Article  CAS  PubMed  Google Scholar 

  94. Dickerson RN, Garmon WM, Kuhl DA, et al. Vitamin K- independent warfarin resistance after concurrent administration of warfarin and continuous enteral nutrition. Pharmacotherapy. 2008;28:308–13.

    Article  CAS  PubMed  Google Scholar 

  95. Veltri MA, Neu AM, Fivush BA, et al. Drug dosing. Pediatr Drugs. 2004;6:45–65.

    Article  Google Scholar 

  96. Mueller BA, Smoyer WE. Challenges in developing evidence-based drug dosing guidelines for adults and children receiving renal replacement therapy. Clin Pharmacol Ther. 2009;86:479–82.

    Article  CAS  PubMed  Google Scholar 

  97. Koren G, Shaffer F, Silverman E, et al. Determinants of low serum concentrations of salicylates in patients with Kawasaki disease. J Pediatr. 1988;112:663–7.

    Article  CAS  PubMed  Google Scholar 

  98. O’Mara NB, Jones PR, Anglin DL, et al. Pharmacokinetics of phenytoin in children with acute neurotrauma. Crit Care Med. 1995;23:1418–24.

    Article  PubMed  Google Scholar 

  99. Stowe CD, Lee KR, Storgion SA, et al. Altered phenytoin pharmacokinetics in children with severe, acute traumatic brain injury. J Clin Pharmacol. 2000;40:1452–61.

    CAS  PubMed  Google Scholar 

  100. Pettersen G, Mouksassi M-S, Theoret Y, et al. Population pharmacokinetics of intravenous pantoprazole in paediatric intensive care patients. Br J Clin Pharmacol. 2009;67:216–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Carcillo JA, Doughty L, Kofos D, et al. Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med. 2003;29:980–4.

    PubMed  Google Scholar 

  102. Pettersen G, Faure C, Litalien C, et al. Therapeutic failure of a single intravenous dose of pantoprazole in young intensive care children. Crit Care Med. 2005;33:A170.

    Google Scholar 

  103. Christ G, Mundigler G, Merhaut C, et al. Adverse cardiovascular effects of ketamine infusion in patients with catecholamine-dependent heart failure. Anaesth Intensive Care. 1997;25:255–9.

    CAS  PubMed  Google Scholar 

  104. Agarwal S, Classen D, Larsen D, et al. Prevelance of adverse events in pediatric intensive care units in the United States. Pediatr Crit Care Med. 2010;11:558–78.

    Article  Google Scholar 

  105. Leape LL, Bates DW, Cullen DJ, et al. Incidence of adverse drug events: ADE prevention study group. JAMA. 1995;274:35–43.

    Article  CAS  PubMed  Google Scholar 

  106. Kaushal R, Bates DW, Landrigan C, et al. Medication errors and adverse drug events in pediatric inpatients. JAMA. 2001;285:2114–20.

    Article  CAS  PubMed  Google Scholar 

  107. Scanlon MC, Karsh B-T. Value of human factors to medication and patient safety in the intensive care unit. Crit Care Med. 2010;38:S90–6.

    Article  PubMed  Google Scholar 

  108. Potts AL, Barr FE, Gregory DF, Wright L, Patel NR. Computerized physician order entry and medication errors in a pediatric critical care unit. Pediatrics. 2004;113:59–63.

    Article  PubMed  Google Scholar 

  109. van Rosse F, Maat B, Rademaker CMA, van Vught AJ, Egberts ACG, Bollen CW. The effect of computerized physician order entry on medication prescription errors and clinical outcome in pediatric and intensive care: a systematic review. Pediatrics. 2009;123:1184–90.

    Article  PubMed  Google Scholar 

  110. Han YY, Carcillo JA, Venkataraman ST, Clark RSB, Watson S, Nguyen TC, Bayir H, Orr RA. Unexpected increase in mortality after implementation of a commercially sold computerized physician order system. Pediatrics. 2005;116:1506–12.

    Article  PubMed  Google Scholar 

  111. Hassan E, Badawi O, Weber RJ, Cohen H. Using technology to prevent adverse drug events in the intensive care unit. Crit Care Med. 2010;38:S97–105.

    Article  PubMed  Google Scholar 

  112. Poon EG, Keohane CA, Yoon CS. Effect of bar-code technology on the safety of medication administration. N Engl J Med. 2010;362:1698–707.

    Article  CAS  PubMed  Google Scholar 

  113. Krupicka MI, Bratton SL, Sonnethal K, et al. Impact of a pediatric clinical pharmacist in the pediatric intensive care unit. Crit Care Med. 2002;30:919–21.

    Article  PubMed  Google Scholar 

  114. Reed MD, Blumer JL. Drug-drug interactions. In: Haddad LM, Shannon MW, Winchester JF, editors. Clinical management of poisoning and drug overdose. 3rd ed. Philadelphia: WB Saunders Co; 1998.

    Google Scholar 

  115. Prescott L. Paracetamol, alcohol, and the liver. Br J Clin Pharmacol. 2000;49:291–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Besunder DO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Besunder, J.B., Pope, J. (2014). Pharmacology in the PICU. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6362-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6362-6_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6361-9

  • Online ISBN: 978-1-4471-6362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics