Skip to main content

Multiple Organ Dysfunction Syndrome

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Multiple organ dysfunction syndrome (MODS) occurs after a life-threatening primary insult, including severe infection, hypoxic-ischemic injury, or other serious injuries. It represents a continuum of physiological abnormalities rather than a distinct state (present or absent). Young age and chronic health conditions are the most important risk factors for the development of MODS. Increasing number of dysfunctional organs is correlated with mortality, greater use of resources, and prolonged stay in pediatric intensive care units. Severe insults converge towards a common systemic response resulting in organ dysfunctions, yet the underlying mechanism remains ill-defined. Acute illnesses may trigger severe inflammatory response resulting in cytokine liberation, activation of coagulation, development of shock and capillary leak. Most experimental therapies to date have focused on attenuating the initial inflammatory response with little benefits in humans. As the initial inflammatory storm subsides, relative immune suppression becomes a major contributor to the disease process. Consequently, MODS patients are highly vulnerable to nosocomial infections. Metabolic demands and neuroendocrine responses also follow a similar seesaw pattern of over-activation followed by a state of relative suppression. Therefore, MODS may emerge from the cumulative suppression of metabolic, neuroendocrine, and immune functions resembling a state of dormancy, hypothesized to be an evolutionary protective cellular mechanism in response to overwhelming injuries. Diagnosis of MODS should encourage physicians to uncover the underlying etiology that may require a specific therapy. The symptomatic management of organ dysfunctions must be carefully assessed in the context of systemic interactions with other failing organs. Although long term outcome data of critically ill children with MODS is limited, 60 % of survivors are reported to have a normal quality of life with minimal health problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burke J, Pontoppidan H, Welch C. High output respiratory failure: an important cause of death ascribed to peritonitis or ileus. Ann Surg. 1963;158(4):581–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Tilney NL, Bailey GL, Morgan AP. Sequential system failure after rupture of abdominal aortic aneurysms: an unsolved problem in postoperative care. Ann Surg. 1973;178(2):117–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Pinsky M. The definition and history of multiple-system organ failure. In: Charbonneau P, Société de Réanimation de Langue Française, editors. Syndrome de défaillance multiviscérale. Paris: Expansion scientifique français; 1991. p. 3–7.

    Google Scholar 

  4. Fry D, Pearlstein L, Fulton R, Polk H. Multiple system organ failure: the role of uncontrolled infection. Arch Surg. 1980;115(2):136–40.

    CAS  PubMed  Google Scholar 

  5. Knauss W, Wagner D. Multiple organ failure: epidemiology and prognosis. Crit Care Clin. 1989;5(2):221–32.

    Google Scholar 

  6. American College of Chest Physicians, Society of Critical Care Medicine. American College of Chest Physicians/society of critical care medicine consensus conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6):864–74.

    Google Scholar 

  7. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA. 1995;273:117–23.

    CAS  PubMed  Google Scholar 

  8. Levy M, Fink M, Marshall J, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31(4):1250–6.

    PubMed  Google Scholar 

  9. Montgomery VL, Strotman JM, Ross MP. Impact of multiple organ system dysfunction and nosocomial infections on survival of children treated with extracorporeal membrane oxygenation after heart surgery. Crit Care Med. 2000;28(2):526–31.

    CAS  PubMed  Google Scholar 

  10. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8.

    PubMed  Google Scholar 

  11. Wilkinson JD, Pollack MM, Glass NL, Kanter RK, Katz RW, Steinhart CM. Mortality associated with multiple organ system failure and sepsis in pediatric intensive care unit. J Pediatr. 1987;111(3):324–8.

    CAS  PubMed  Google Scholar 

  12. Wilkinson JD, Pollack MM, Ruttimann UE, Glass NL, Yeh TS. Outcome of pediatric patients with multiple organ system failure. Crit Care Med. 1986;14(4):271–4.

    CAS  PubMed  Google Scholar 

  13. Gebara BM. Values for systolic blood pressure. Pediatr Crit Care Med. 2005;6(4):500. [Comment Letter]; author reply 500-1.

    PubMed  Google Scholar 

  14. Proulx F, Grunberg F. Suicide in hospitalized patients. Sante Ment Que. 1994;19(2):131–43.

    CAS  PubMed  Google Scholar 

  15. Tantalean JA, Leon RJ, Santos AA, Sanchez E. Multiple organ dysfunction syndrome in children. Pediatr Crit Care Med. 2003;4(2):181–5.

    PubMed  Google Scholar 

  16. Goh A, Lum L. Sepsis, severe sepsis and septic shock in paediatric multiple organ dysfunction syndrome. J Paediatr Child Health. 1999;35(5):488–92.

    CAS  PubMed  Google Scholar 

  17. Proulx F, Lacroix J, Farrell CA, Lambert M. Blood lactate and gastric intramucosal pH during severe sepsis. Crit Care Med. 1996;24(6):1092.

    CAS  PubMed  Google Scholar 

  18. Leteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet. 2003;362(9379):192–7.

    PubMed  Google Scholar 

  19. Leteurtre S, Martinot A, Duhamel A, Gauvin F, Grandbastien B, Nam TV, et al. Development of a pediatric multiple organ dysfunction score: use of two strategies. Med Decis Making. 1999;19(4):399–410.

    CAS  PubMed  Google Scholar 

  20. Graciano AL, Balko JA, Rahn DS, Ahmad N, Giroir BP. The Pediatric Multiple Organ Dysfunction Score (P-MODS): development and validation of an objective scale to measure the severity of multiple organ dysfunction in critically ill children. Crit Care Med. 2005;33(7):1484–91.

    PubMed  Google Scholar 

  21. Tibby SM. Does PELOD measure organ dysfunction…and is organ function a valid surrogate for death? Intensive Care Med. 2010;36(1):4–7.

    PubMed  Google Scholar 

  22. Garcia PC, Eulmesekian P, Branco RG, Perez A, Sffogia A, Olivero L, et al. External validation of the paediatric logistic organ dysfunction score. Intensive Care Med. 2010;36(1):116–22.

    PubMed  Google Scholar 

  23. Vlasselaers D, Milants I, Desmet L, Wouters PJ, Vanhorebeek I, van den Heuvel I, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373(9663):547–56. Randomized Controlled Trial Research Support, Non-U.S. Gov’t.

    CAS  PubMed  Google Scholar 

  24. Lacroix J, Hebert PC, Hutchison JS, Hume HA, Tucci M, Ducruet T, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356(16):1609–19.

    CAS  PubMed  Google Scholar 

  25. Leteurtre S, Duhamel A, Grandbastien B, Proulx F, Cotting J, Gottesman R, et al. Daily estimation of the severity of multiple organ dysfunction syndrome in critically ill children. CMAJ. 2010;182(11):1181–7.

    PubMed Central  PubMed  Google Scholar 

  26. Berkowitz FE, Vallabh P, Altman DI, Diamantes F, Van Wyk HJ, Stroucken JM. Jarisch-Herxheimer reaction in meningococcal meningitis. Am J Dis Child. 1983;137(6):599.

    CAS  PubMed  Google Scholar 

  27. Baue AE. Multiple, progressive, or sequential systems failure. A syndrome of the 1970s. Arch Surg. 1975;110(7):779–81.

    CAS  PubMed  Google Scholar 

  28. Johnston J, Yi M, Britto M, Mrus J. Importance of organ dysfunction in determining hospital outcomes in children. J Pediatr. 2004;144(5):595–601.

    PubMed  Google Scholar 

  29. Bestati N, Leteurtre S, Duhamel A, Proulx F, Grandbastien B, Lacroix J, et al. Differences in organ dysfunctions between neonates and older children: a prospective, observational, multicenter study. Crit Care. 2010;14(6):R202.

    PubMed Central  PubMed  Google Scholar 

  30. Avanoglu A, Ergun O, Bakirtas F, Erdener A. Characteristics of multisystem organ failure in neonates. Eur J Pediatr Surg. 1997;7(5):263–6.

    CAS  PubMed  Google Scholar 

  31. Shah P, Riphagen S, Beyene J, Perlman M. Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2004;89(2):F152–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Kearns G, Abdel-Rahman S, Alander S, Blowey D, Leeder J, RE K. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    CAS  PubMed  Google Scholar 

  33. Typpo K, Petersen N, Hallman D, Markovitz B, Mariscalco M. Impact of premorbid conditions on multiple organ dysfunction syndrome in the PICU. Crit Care Med. 2007;35(12):A10.

    Google Scholar 

  34. Carvalho PR, Feldens L, Seitz EE, Rocha TS, Soledade MA, Trotta EA. Prevalence of systemic inflammatory syndromes at a tertiary pediatric intensive care unit. J Pediatr (Rio J). 2005;81(2):143–8.

    Google Scholar 

  35. Leclerc F, Leteurtre S, Duhamel A, Grandbastien B, Proulx F, Martinot A, et al. Cumulative influence of organ dysfunctions and septic state on mortality of critically ill children. Am J Respir Crit Care Med. 2005;171(4):348–53.

    PubMed  Google Scholar 

  36. Aneja RK, Carcillo JA. Differences between adult and pediatric septic shock. Minerva Anestesiol. 2011;77(10):986–92.

    CAS  PubMed  Google Scholar 

  37. Stieh J, Fischer G, Scheewe J, Uebing A, Dutschke P, Jung O, et al. Impact of preoperative treatment strategies on the early perioperative outcome in neonates with hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2006;131(5):1122–9. e2.

    PubMed  Google Scholar 

  38. Seghaye MC, Engelhardt W, Grabitz RG, Faymonville ME, Hornchen H, Messmer BJ, et al. Multiple system organ failure after open heart surgery in infants and children. Thorac Cardiovasc Surg. 1993;41(1):49–53.

    CAS  PubMed  Google Scholar 

  39. Baslaim G, Bashore J, Al-Malki F, Jamjoom A. Can the outcome of pediatric extracorporeal membrane oxygenation after cardiac surgery be predicted? Ann Thorac Cardiovasc Surg. 2006;12(1):21–7.

    PubMed  Google Scholar 

  40. Aharon AS, Drinkwater Jr DC, Churchwell KB, Quisling SV, Reddy VS, Taylor M, et al. Extracorporeal membrane oxygenation in children after repair of congenital cardiac lesions. Ann Thorac Surg. 2001;72(6):2095–101. discussion 101–2.

    CAS  PubMed  Google Scholar 

  41. Shime N, Ashida H, Hiramatsu N, Kageyama K, Katoh Y, Hashimoto S, et al. Arterial ketone body ratio for the assessment of the severity of illness in pediatric patients following cardiac surgery. J Crit Care. 2001;16:102–7.

    CAS  PubMed  Google Scholar 

  42. Ben-Abraham R, Efrati O, Mishali D, Yulia F, Vardi A, Barzilay Z, et al. Predictors for mortality after prolonged mechanical ventilation after cardiac surgery in children. J Crit Care. 2002;17(4):235–9.

    PubMed  Google Scholar 

  43. Calkins CM, Bensard DD, Moore EE, McIntyre RC, Silliman CC, Biffl W, et al. The injured child is resistant to multiple organ failure: a different inflammatory response? J Trauma. 2002;53(6):1058–63.

    PubMed  Google Scholar 

  44. Steinau G, Kaussen T, Bolten B, Schachtrupp A, Neumann UP, Conze J, et al. Abdominal compartment syndrome in childhood: diagnostics, therapy and survival rate. Pediatr Surg Int. 2011;27(4):399–405.

    PubMed  Google Scholar 

  45. Feickert HJ, Schepers AK, Rodeck B, Geerlings H, Hoyer PF. Incidence, impact on survival, and risk factors for multi-organ system failure in children following liver transplantation. Pediatr Transplant. 2001;5(4):266–73.

    CAS  PubMed  Google Scholar 

  46. Pinho-Apezzato ML, Tannuri U, Tannuri AC, Mello ES, Lima F, Gibelli NE, et al. Multiple clinical presentations of lymphoproliferative disorders in pediatric liver transplant recipients: a single-center experience. Transplant Proc. 2010;42(5):1763–8.

    CAS  PubMed  Google Scholar 

  47. Diaz M, Vicent M, Prudencio M, Rodriguez F, Marin C, Serrano A, et al. Predicting factors for admission to an intensive care unit and clinical outcome in pediatric patients receiving hematopoietic stem cell transplantation. Haematologica. 2002;87(3):292–8.

    PubMed  Google Scholar 

  48. Kutko M, Calarco M, Flaherty M, Helmrich R, Ushay H, Pon S, et al. Mortality rates in pediatric septic shock with and without multiple organ system failure. Pediatr Crit Care Med. 2003;4(3):333–7.

    PubMed  Google Scholar 

  49. Rossi R, Shemie SD, Calderwood S. Prognosis of pediatric bone marrow transplant recipients requiring mechanical ventilation. Crit Care Med. 1999;27(6):1181–6.

    CAS  PubMed  Google Scholar 

  50. Mollen KP, Anand RJ, Tsung A, Prince JM, Levy RM, Billiar TR. Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock. 2006;26(5):430–7.

    CAS  PubMed  Google Scholar 

  51. Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol. 2001;2(6):Reviews1018.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 2007;220:35–46.

    CAS  PubMed  Google Scholar 

  54. Hazelzet JA, van der Voort E, Lindemans J, ter Heerdt PG, Neijens HJ. Relation between cytokines and routine laboratory data in children with septic shock and purpura. Intensive Care Med. 1994;20(5):371–4.

    CAS  PubMed  Google Scholar 

  55. Kornelisse RF, Hazelzet JA, Savelkoul HF, Hop WC, Suur MH, Borsboom AN, et al. The relationship between plasminogen activator inhibitor-1 and proinflammatory and counterinflammatory mediators in children with meningococcal septic shock. J Infect Dis. 1996;173(5):1148–56.

    CAS  PubMed  Google Scholar 

  56. Viktorov VV, Viktorova TV, Mironov PI, Khustnutdinova EK. Significance of hereditary factors in multiple organ dysfunction syndrome in children with infections. Anesteziol Reanimatol. 2000;1:32–4.

    PubMed  Google Scholar 

  57. Mariscalco MM. Infection and the host response. In: Fuhrman BP, Zimmerman JJ, editors. Pediatric critical care. 3rd ed. Philadelphia: Mosby; 2006. p. 1299–319.

    Google Scholar 

  58. Hotchkiss RS, McConnell KW, Bullok K, Davis CG, Chang KC, Schwulst SJ, et al. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J Immunol. 2006;176(9):5471–7.

    CAS  PubMed  Google Scholar 

  59. Singh-Naz N, Sprague BM, Patel KM, Pollack MM. Risk factors for nosocomial infection in critically ill children: a prospective cohort study. Crit Care Med. 1996;24(5):875–8.

    CAS  PubMed  Google Scholar 

  60. Hall MW, Knatz NL, Vetterly C, Tomarello S, Wewers MD, Volk HD, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32.

    CAS  PubMed  Google Scholar 

  61. Cavaillon J, Adib-Conquy M, Cloez-Tayarani I, Fitting C. Immunodepression in sepsis and SIRS assessed by ex vivo cytokine production is not a generalized phenomenon: a review. J Endotoxin Res. 2001;7(2):85–93.

    CAS  PubMed  Google Scholar 

  62. Adib-Conquy M, Moine P, Asehnoune K, Edouard A, Espevik T, Miyake K, et al. Toll-like receptor-mediated tumor necrosis factor and interleukin-10 production differ during systemic inflammation. Am J Respir Crit Care Med. 2003;168(2):158–64.

    PubMed  Google Scholar 

  63. Adib-Conquy M, Adrie C, Moine P, Asehnoune K, Fitting C, Pinsky MR, et al. NF-kappaB expression in mononuclear cells of patients with sepsis resembles that observed in lipopolysaccharide tolerance. Am J Respir Crit Care Med. 2000;162(5):1877–83.

    CAS  PubMed  Google Scholar 

  64. Cavaillon J, Fitting C, Adib-Conquy M. Mechanisms of immunodysregulation in sepsis. Contrib Nephrol. 2004;144:76–93.

    PubMed  Google Scholar 

  65. Felmet KA, Hall MW, Clark RS, Jaffe R, Carcillo JA. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J Immunol. 2005;174(6):3765–72.

    CAS  PubMed  Google Scholar 

  66. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008;300(4):413–22. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Short M. Linking the sepsis triad of inflammation, coagulation and suppressed fibrinolysis to infants. Adv Neonat Care. 2004;4(5):258–73.

    Google Scholar 

  68. Doughty L, Carcillo JA, Kaplan S, Janosky J. The compensatory anti-inflammatory cytokine interleukin 10 response in pediatric sepsis-induced multiple organ failure. Chest. 1998;113(6):1625–31.

    CAS  PubMed  Google Scholar 

  69. Doughty L, Carcillo JA, Kaplan S, Janosky J. Plasma nitrite and nitrate concentrations and multiple organ failure in pediatric sepsis. Crit Care Med. 1998;26(1):157–62.

    CAS  PubMed  Google Scholar 

  70. Doughty LA, Kaplan SS, Carcillo JA. Inflammatory cytokine and nitric oxide responses in pediatric sepsis and organ failure. Crit Care Med. 1996;24(7):1137–43.

    CAS  PubMed  Google Scholar 

  71. Hatherill M, Tibby SM, Turner C, Ratnavel N, Murdoch IA. Procalcitonin and cytokine levels: relationship to organ failure and mortality in pediatric septic shock. Crit Care Med. 2000;28(7):2591–4.

    CAS  PubMed  Google Scholar 

  72. Whalen MJ, Doughty LA, Carlos TM, Wisniewski SR, Kochanek PM, Carcillo JA. Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 are increased in the plasma of children with sepsis-induced multiple organ failure. Crit Care Med. 2000;28(7):2600–7.

    CAS  PubMed  Google Scholar 

  73. Han YY, Doughty LA, Kofos D, Sasser H, Carcillo JA. Procalcitonin is persistently increased among children with poor outcome from bacterial sepsis. Pediatr Crit Care Med. 2003;4(1):21–5.

    PubMed  Google Scholar 

  74. Wong HR, Carcillo JA, Burckart G, Shah N, Janosky JE. Increased serum nitrite and nitrate concentrations in children with the sepsis syndrome. Crit Care Med. 1995;23(5):835–42.

    CAS  PubMed  Google Scholar 

  75. Green J, Doughty L, Kaplan SS, Sasser H, Carcillo JA. The tissue factor and plasminogen activator inhibitor type-1 response in pediatric sepsis-induced multiple organ failure. Thromb Haemost. 2002;87(2):218–23.

    CAS  PubMed  Google Scholar 

  76. Anisimova IN, Shvets OL, Guliaev DV, Tsinzerling VA, Belebez’ev GI. Morphologic aspects of hemostasis disturbances in meningococcemia in children. Arkh Patol. 1993;55(5):16–22.

    PubMed  Google Scholar 

  77. Zeerleder S, Schroeder V, Hack CE, Kohler HP, Wuillemin WA. TAFI and PAI-1 levels in human sepsis. Thromb Res. 2006;118(2):205–12.

    CAS  PubMed  Google Scholar 

  78. Levi M, de Jonge E, van der Poll T. New treatment strategies for disseminated intravascular coagulation based on current understanding of the pathophysiology. Ann Med. 2004;36(1):41–9.

    CAS  PubMed  Google Scholar 

  79. Nguyen TC, Carcillo JA. Bench-to-bedside review: thrombocytopenia-associated multiple organ failure–a newly appreciated syndrome in the critically ill. Crit Care. 2006;10(6):235.

    PubMed Central  PubMed  Google Scholar 

  80. Nguyen T, Hall M, Han Y, Fiedor M, Hasset A, Lopez-Plaza I, et al. Microvascular thrombosis in pediatric multiple organ failure: is it a therapeutic target? Pediatr Crit Care Med. 2001;2(3):187–96.

    PubMed  Google Scholar 

  81. Nguyen TC, Liu A, Liu L, Ball C, Choi H, May WS, et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92(1):121–4.

    CAS  PubMed  Google Scholar 

  82. Foley K, Keegan M, Campbell I, Murby B, Hancox D, Pollard B. Use of single-frequency bioimpedance at 50 kHz to estimate total body water in patients with multiple organ failure and fluid overload. Crit Care Med. 1999;27(8):1472–7.

    CAS  PubMed  Google Scholar 

  83. Shime N, Ashida H, Chihara E, Kageyama K, Katoh Y, Yamagishi M, et al. Bioelectrical impedance analysis for assessment of severity of illness in pediatric patients after heart surgery. Crit Care Med. 2002;30(3):518–20.

    PubMed  Google Scholar 

  84. Hazelzet JA, de Groot R, van Mierlo G, Joosten KF, van der Voort E, Eerenberg A, et al. Complement activation in relation to capillary leakage in children with septic shock and purpura. Infect Immun. 1998;66(11):5350–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Zhang S, Wang S, Li Q, Yao S, Zeng B, Ziegelstein RC, et al. Capillary leak syndrome in children with C4A-deficiency undergoing cardiac surgery with cardiopulmonary bypass: a double-blind, randomised controlled study. Lancet. 2005;366(9485):556–62.

    CAS  PubMed  Google Scholar 

  86. Zhang S, Wang S, Yao S. Evidence for development of capillary leak syndrome associated with cardiopulmonary bypass in pediatric patients with the homozygous C4A null phenotype. Anesthesiology. 2004;100(6):1387–93.

    PubMed  Google Scholar 

  87. Nurnberger W, Heying R, Burdach S, Gobel U. C1 esterase inhibitor concentrate for capillary leakage syndrome following bone marrow transplantation. Ann Hematol. 1997;75(3):95–101.

    CAS  PubMed  Google Scholar 

  88. Naran N, Sagy M, Bock KR. Continuous renal replacement therapy results in respiratory and hemodynamic beneficial effects in pediatric patients with severe systemic inflammatory response syndrome and multiorgan system dysfunction. Pediatr Crit Care Med. 2010;11(6):737–40.

    PubMed  Google Scholar 

  89. Flori HR, Church G, Liu KD, Gildengorin G, Matthay MA. Positive fluid balance is associated with higher mortality and prolonged mechanical ventilation in pediatric patients with acute lung injury. Crit Care Res Pract. 2011;2011:854142.

    PubMed Central  PubMed  Google Scholar 

  90. Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107(6):1309–12.

    CAS  PubMed  Google Scholar 

  91. Goldstein SL, Somers MJ, Baum MA, Symons JM, Brophy PD, Blowey D, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    PubMed  Google Scholar 

  92. Michael M, Kuehnle I, Goldstein S. Fluid overload and acute renal failure in pediatric stem cell transplant patients. Pediatr Nephrol. 2004;19(1):91–5.

    PubMed  Google Scholar 

  93. London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010;2(23):23ra19.

    PubMed Central  PubMed  Google Scholar 

  94. Ye X, Ding J, Zhou X, Chen G, Liu SF. Divergent roles of endothelial NF-kappaB in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med. 2008;205(6):1303–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Van den Berghe G, de Zegher F, Bouillon R. Acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab. 1998;83(2):1827–34.

    PubMed  Google Scholar 

  96. Joosten KF, de Kleijn ED, Westerterp M, de Hoog M, Eijck FC, Hop WCJ, et al. Endocrine and metabolic responses in children with meningococcal sepsis: striking differences between survivors and nonsurvivors. J Clin Endocrinol Metab. 2000;85(10):3746–53.

    CAS  PubMed  Google Scholar 

  97. den Brinker M, Joosten KF, Liem O, de Jong FH, Hop WC, Hazelzet JA, et al. Adrenal insufficiency in meningococcal sepsis: bioavailable cortisol levels and impact of interleukin-6 levels and intubation with etomidate on adrenal function and mortality. J Clin Endocrinol Metab. 2005;90(9):5110–7.

    Google Scholar 

  98. Lichtarowicz-Krynska E, Cole T, Camacho-Hubner C, Britto J, Levin M, Klein N, et al. Circulating aldosterone levels are unexpectedly low in children with acute meningococcal disease. J Endocrinol Metab. 2004;89(3):1410–4.

    CAS  Google Scholar 

  99. Riordan F, Thomson A, Ratcliffe J, Sills J, Diver M, Hart C. Admission cortisol and adrenocorticotrophic hormone levels in children with meningococcal disease; evidence for adrenal insufficiency? Crit Care Med. 1999;27(10):2257–61.

    CAS  PubMed  Google Scholar 

  100. De Kleijn ED, Joosten KF, Van Rijn B, Westerterp M, De Groot R, Hokken-Koelega AC, et al. Low serum cortisol in combination with high adrenocorticotrophic hormone concentrations are associated with poor outcome in children with severe meningococcal disease. Pediatr Infect Dis J. 2002;21(4):330–6.

    PubMed  Google Scholar 

  101. den Brinker M, Joosten KF, Visser TJ, Hop WC, de Rijke YB, Hazelzet JA, et al. Euthyroid sick syndrome in meningococcal sepsis: the impact of peripheral thyroid hormone metabolism and binding proteins. J Clin Endocrinol Metab. 2005;90(10):5613–20.

    Google Scholar 

  102. den Brinker M, Dumas B, Visser TJ, Hop WC, Hazelzet JA, Festen DA, et al. Thyroid function and outcome in children who survived meningococcal septic shock. Intensive Care Med. 2005;31(7):970–6.

    Google Scholar 

  103. Van den Berghe G, de Zegher F, Lauwers P. Dopamine suppresses pituitary function in infants and children. Crit Care Med. 1994;22(11):1747–53.

    PubMed  Google Scholar 

  104. Herndon DN, Gore D, Cole M, Desai MH, Linares H, Abston S, et al. Determinants of mortality in pediatric patients with greater than 70% full-thickness total body surface area thermal injury treated by early total excision and grafting. J Trauma. 1987;27(2):208–12.

    CAS  PubMed  Google Scholar 

  105. Frayn K. Hormonal control of metabolism in trauma and sepsis. Clin Endocrinol. 1986;24(5):577–99.

    CAS  Google Scholar 

  106. Turi RA, Petros AJ, Eaton S, Fasoli L, Powis M, Basu R, et al. Energy metabolism of infants and children with systemic inflammatory response syndrome and sepsis. Ann Surg. 2001;233(4):581–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Briassoulis G, Venkataraman S, Thompson A. Cytokines and metabolic patterns in pediatric patients with critical illness. Clin Dev Immunol. 2010;2010:354047.

    PubMed Central  PubMed  Google Scholar 

  108. Cerra FB. Hypermetabolism-organ failure syndrome: a metabolic response to injury. Crit Care Clin. 1989;5(2):289–302.

    CAS  PubMed  Google Scholar 

  109. Schwartz D, Mendonca M, Schwartz I, Xia Y, Satriano J, Wilson CB, et al. Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J Clin Invest. 1997;100(2):439–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. 1999;27:1230–51.

    CAS  PubMed  Google Scholar 

  111. Singer M, Brealey D. Mitochondrial dysfunction in sepsis. Biochem Soc Symp. 1999;66:149–66.

    CAS  PubMed  Google Scholar 

  112. Scheller K, Seibel P, Sekeris CE. Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. Int Rev Cytol. 2003;222:1–61.

    PubMed  Google Scholar 

  113. Borutaite V, Budriunaite A, Brown GC. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim Biophys Acta. 2000;1459(2–3):405–12.

    CAS  PubMed  Google Scholar 

  114. Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A. 1998;95(13):7631–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–23.

    CAS  PubMed  Google Scholar 

  116. Singer M. Multiorgan failure is an adaptative, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364:S45–7.

    Google Scholar 

  117. Pollack MM, Fields AI, Ruttimann UE. Sequential cardiopulmonary variables of infants and children in septic shock. Crit Care Med. 1984;12(7):554–9.

    CAS  PubMed  Google Scholar 

  118. Pollack MM, Fields AI, Ruttimann UE. Distributions of cardiopulmonary variables in pediatric survivors and nonsurvivors of septic shock. Crit Care Med. 1985;13(6):454–9.

    CAS  PubMed  Google Scholar 

  119. Mercier JC, Beaufils F, Hartmann JF, Azema D. Hemodynamic patterns of meningococcal shock in children. Crit Care Med. 1988;16(1):27–33.

    CAS  PubMed  Google Scholar 

  120. Roth BL, Suba EA, Carcillo JA, Litten RZ. Alterations in hepatic and aortic phospholipase-C coupled receptors and signal transduction in rat intraperitoneal sepsis. Prog Clin Biol Res. 1989;286:41–59.

    CAS  PubMed  Google Scholar 

  121. Duke TD, Butt W, South M. Predictors of mortality and multiple organ failure in children with sepsis. Intensive Care Med. 1997;23(6):684–92.

    CAS  PubMed  Google Scholar 

  122. Siegel LB, Dalton HJ, Hertzog JH, Hopkins RA, Hannan RL, Hauser GJ. Initial postoperative serum lactate levels predict survival in children after open heart surgery. Intensive Care Med. 1996;22(1):1418–23.

    CAS  PubMed  Google Scholar 

  123. Casado-Flores J, Mora E, Perez-Corral F, Martinez-Azagra A, Garcia-Teresa MA, Ruiz-Lopez MJ. Prognostic value of gastric intramucosal pH in critically ill children. Crit Care Med. 1998;26(6):1123–7.

    CAS  PubMed  Google Scholar 

  124. Dugas MA, Proulx F, de Jaeger A, Lacroix J, Lambert M. Markers of tissue hypoperfusion in pediatric septic shock. Intensive Care Med. 2000;26(1):75–83.

    CAS  PubMed  Google Scholar 

  125. Calvo RC, Ruza TF, Delgado Dominguez MA, Lopez-Herce CJ, Dorao Martinez-Romillo P. Effectiveness of hemodynamic treatment guided by gastric intramucosal pH monitoring. An Esp Pediatr. 2000;52(4):339–45.

    Google Scholar 

  126. de Souza RL, de Carvalho WB. Preliminary study about the utility of gastric tonometry during the weaning from mechanical ventilation. Rev Assoc Med Bras. 2002;48(1):66–72.

    PubMed  Google Scholar 

  127. Campbell ME, Costeloe KL. Measuring intramucosal pH in very low birth weight infants. Pediatr Res. 2001;50(3):398–404.

    CAS  PubMed  Google Scholar 

  128. Matthay M, Zimmerman G. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol. 2005;33(4):319–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Flori HR, Glidden DV, Rutherford GW, Matthay MA. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med. 2005;171(9):995–1001.

    PubMed  Google Scholar 

  130. Newth C, Stretton M, Deakers T, Hammer J. Assessment of pulmonary function in the early phase of ARDS in pediatric patients. Pediatr Pulmonol. 1997;23(3):169–75.

    CAS  PubMed  Google Scholar 

  131. Fishel RS, Are C, Barbul A. Vessel injury and capillary leak. Crit Care Med. 2003;31(8 Suppl):S502–11.

    PubMed  Google Scholar 

  132. Fink MP, Delude RL. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin. 2005;21(2):177–96.

    CAS  PubMed  Google Scholar 

  133. Senthil M, Brown M, Xu DZ, Lu Q, Feketeova E, Deitch EA. Gut-lymph hypothesis of systemic inflammatory response syndrome/multiple-organ dysfunction syndrome: validating studies in a porcine model. J Trauma. 2006;60(5):958–65. discussion 65–7.

    PubMed  Google Scholar 

  134. Sharma R, Tepas 3rd JJ, Hudak ML, Mollitt DL, Wludyka PS, Teng RJ, et al. Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis. J Pediatr Surg. 2007;42(3):454–61.

    PubMed  Google Scholar 

  135. Lacroix J, Nadeau D, Laberge S, Gauthier M, Lapierre G, Farrell CA. Frequency of upper gastrointestinal bleeding in a pediatric intensive care unit. Crit Care Med. 1992;20(1):35–42.

    CAS  PubMed  Google Scholar 

  136. Gauvin F, Dugas MA, Chaibou M, Morneau S, Lebel D, Lacroix J. The impact of clinically significant upper gastrointestinal bleeding acquired in a pediatric intensive care unit. Pediatr Crit Care Med. 2001;2(4):294–8.

    CAS  PubMed  Google Scholar 

  137. Chaibou M, Tucci M, Dugas MA, Farrell CA, Proulx F, Lacroix J. Clinically significant upper gastrointestinal bleeding acquired in a pediatric intensive care unit: a prospective study. Pediatrics. 1998;102(4 Pt 1):933–8.

    CAS  PubMed  Google Scholar 

  138. Jordan I, Cambra FJ, Alcover E, Colomer J, Campistol J, Caritg J, et al. Neuromuscular pathology in a critical pediatric patient. Rev Neurol. 1999;29(5):432–5.

    CAS  PubMed  Google Scholar 

  139. Sheth RD, Bolton CF. Neuromuscular complications of sepsis in children. J Child Neurol. 1995;10(5):346–52.

    CAS  PubMed  Google Scholar 

  140. Petersen B, Schneider C, Strassburg HM, Schrod L. Critical illness neuropathy in pediatric intensive care patients. Pediatr Neurol. 1999;21(4):749–53.

    CAS  PubMed  Google Scholar 

  141. Ohto T, Iwasaki N, Ohkoshi N, Aoki T, Ichinohe M, Tanaka R, et al. A pediatric case of critical illness polyneuropathy: clinical and pathological findings. Brain Dev. 2005;27(7):535–8.

    PubMed  Google Scholar 

  142. Banwell BL, Mildner RJ, Hassall AC, Becker LE, Vajsar J, Shemie SD. Muscle weakness in critically ill children. Neurology. 2003;61(12):1779–82.

    CAS  PubMed  Google Scholar 

  143. Morrison AL, Gillis J, O’Connell AJ, Schell DN, Dossetor DR, Mellis C. Quality of life of survivors of pediatric intensive care. Pediatr Crit Care Med. 2002;3(1):1–5.

    PubMed  Google Scholar 

  144. Fanconi S, Kraemer R, Weber J, Tschaeppeler H, Pfenninger J. Long-term sequelae in children surviving adult respiratory distress syndrome. J Pediatr. 1985;106(2):218–22.

    CAS  PubMed  Google Scholar 

  145. Ben-Abraham R, Weinbroum AA, Roizin H, Efrati O, Augarten A, Harel R, et al. Long-term assessment of pulmonary function tests in pediatric survivors of acute respiratory distress syndrome. Med Sci Monit. 2002;8(3):CR153–7.

    PubMed  Google Scholar 

  146. Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69(1):184–9.

    CAS  PubMed  Google Scholar 

  147. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709.

    CAS  PubMed  Google Scholar 

  148. Nadel S, Goldstein B, Williams MD, Dalton H, Peters M, Macias WL, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369(9564):836–43.

    CAS  PubMed  Google Scholar 

  149. Wheeler DS. An after action report of drotrecogin alpha (activated) and lessons for the future. Pediatr Crit Care Med. 2012;13:692–4.

    PubMed  Google Scholar 

  150. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.

    CAS  PubMed  Google Scholar 

  151. Bailey D, Phan V, Litalien C, Ducruet T, Merouani A, Lacroix J, et al. Risk factors of acute renal failure in critically ill children: a prospective descriptive epidemiological study. Pediatr Crit Care Med. 2007;8(1):29–35.

    PubMed  Google Scholar 

  152. Vet NJ, de Hoog M, Tibboel D, de Wildt SN. The effect of inflammation on drug metabolism: a focus on pediatrics. Drug Discov Today. 2011;16(9–10):435–42.

    CAS  PubMed  Google Scholar 

  153. Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med. 2007;35(9):S441–8.

    CAS  PubMed  Google Scholar 

  154. Piel DA, Gruber PJ, Weinheimer CJ, Courtois MR, Robertson CM, Coopersmith CM, et al. Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit Care Med. 2007;35(9):2120–7.

    CAS  PubMed  Google Scholar 

  155. Vanhorebeek I, Langouche L, Van den Berghe G. Glycemic and nonglycemic effects of insulin: how do they contribute to a better outcome of critical illness? Curr Opin Crit Care. 2005;11(4):304–11.

    PubMed  Google Scholar 

  156. Verbruggen SC, Joosten KF, Castillo L, van Goudoever JB. Insulin therapy in the pediatric intensive care unit. Clin Nutr. 2007;26(6):677–90.

    CAS  PubMed  Google Scholar 

  157. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.

    PubMed  Google Scholar 

  158. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    PubMed  Google Scholar 

  159. Brunkhorst FM, Reinhart K. Sepsis therapy: present guidelines and their application. Chirurg. 2008;79(4):306–14.

    CAS  PubMed  Google Scholar 

  160. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    CAS  PubMed  Google Scholar 

  161. Carcillo JA, Fields AI. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med. 2002;30(6):1365–78.

    PubMed  Google Scholar 

  162. Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37(8):2448–54. Review.

    PubMed  Google Scholar 

  163. Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20. Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.

    CAS  PubMed  Google Scholar 

  164. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–38. Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t.

    PubMed  Google Scholar 

  165. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74. Multicenter Study Research Support, Non-U.S. Gov’t.

    PubMed Central  PubMed  Google Scholar 

  166. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7. Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    PubMed  Google Scholar 

  167. Foland JA, Fortenberry JD, Warshaw BL, Pettignano R, Merritt RK, Heard ML, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771–6.

    PubMed  Google Scholar 

  168. Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25. Multicenter Study Research Support, Non-U.S. Gov’t.

    PubMed  Google Scholar 

  169. Claure-Del Granado R, Mehta RL. Assessing and delivering dialysis dose in acute kidney injury. Semin Dial. 2011;24(2):157–63. Research Support, Non-U.S. Gov’t Review.

    PubMed  Google Scholar 

  170. Proulx F, Gauthier M, Nadeau D, Lacroix J, Farrell CA. Timing and predictors of death in pediatric patients with multiple organ system failure. Crit Care Med. 1994;22(6):1025–31.

    CAS  PubMed  Google Scholar 

  171. Tan G, Tan T, Goh D, HK Y. Risk factors for predicting mortality in a paediatric intensive care unit. Ann Acad Med Singapore. 1998;27(6):813–8.

    CAS  PubMed  Google Scholar 

  172. Khilnani P, Sarma D, Zimmerman J. Epidemiology and peculiarities of pediatric multiple organ dysfunction syndrome in New Delhi, India. Intensive Care Med. 2006;32:1856–62.

    PubMed  Google Scholar 

  173. Proulx F, Fayon M, Farrell CA, Lacroix J, Gauthier M. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 1996;109(4):1033–7.

    CAS  PubMed  Google Scholar 

  174. Keenan HT, Bratton SL, Martin LD, Crawford SW, Weiss NS. Outcome of children who require mechanical ventilatory support after bone marrow transplantation. Crit Care Med. 2000;28(3):830–5.

    CAS  PubMed  Google Scholar 

  175. Lamas A, Otheo E, Ros P, Vazquez JL, Maldonado MS, Munoz A, et al. Prognosis of child recipients of hematopoietic stem cell transplantation requiring intensive care. Intensive Care Med. 2003;29(1):91–6.

    PubMed  Google Scholar 

  176. Proulx F, Joyal JS, Mariscalco MM, Leteurtre S, Leclerc F, Lacroix J. The pediatric multiple organ dysfunction syndrome. Pediatr Crit Care Med. 2009;10(1):12–22.

    PubMed  Google Scholar 

  177. Mack CL, Ferrario M, Abecassis M, Whitington PF, Superina RA, Alonso EM. Living donor liver transplantation for children with liver failure and concurrent multiple organ system failure. Liver Transpl. 2001;7(10):890–5.

    CAS  PubMed  Google Scholar 

  178. Kamat P, Kunde S, Vos M, Vats A, Heffron T, Romero R, et al. Invasive intracranial pressure monitoring is a useful adjunct in the management of severe hepatic encephalopathy associated with pediatric acute liver failure. Pediatr Crit Care Med. 2012;13(1):e33–8.

    PubMed Central  PubMed  Google Scholar 

  179. Ozanne B, Nelson J, Cousineau J, Lambert M, Phan V, Mitchell G, et al. Threshold for toxicity from hyperammonemia in critically ill children. J Hepatol. 2012;56(1):123–8.

    CAS  PubMed  Google Scholar 

  180. Karapinar B, Yilmaz D, Balkan C, Akin M, Ay Y, Kvakli K. An unusual cause of multiple organ dysfunction syndrome in the pediatric intensive care unit: hemophagocytic lymphohistiocytosis. Pediatr Crit Care Med. 2009;10(3):285–90.

    PubMed  Google Scholar 

  181. Castillo L, Carcillo J. Secondary hemophagocytic lymphohistiocytosis and severe sepsis/systemic inflammatory response syndrome/multiorgan dysfunction syndrome/macrophage activation syndrome share common intermediate phenotypes on a spectrum of inflammation. Pediatr Crit Care Med. 2009;10(3):387–92. Research Support, N.I.H., Extramural.

    PubMed  Google Scholar 

  182. Chehal A, Taher A, Shamseddine A. Sicklemia with multi-organ failure syndrome and thrombotic thrombocytopenic purpura. Hemoglobin. 2002;26(4):345–51.

    CAS  PubMed  Google Scholar 

  183. Brenner JL, Jadavji T, Pinto A, Trevenen C, Patton D. Severe Kawasaki disease in infants: two fatal cases. Can J Cardiol. 2000;16:1017–23.

    CAS  PubMed  Google Scholar 

  184. Liet JM, Pelletier V, Robinson BH, Laryea MD, Wendel U, Morneau S, et al. The effect of short term dimethylglycine treatment on oxygen consumption in cytochrome oxidase deficiency: a double-blind randomized crossover trial. J Pediatr. 2003;142:62–6.

    CAS  PubMed  Google Scholar 

  185. Brossier T, Gwinner N, Fontaine P, Girard C. Anesthetic malignant hyperthermia and multiple organ dysfunction syndrome. Ann Fr Anesth Reanim. 2001;20:647–50.

    CAS  PubMed  Google Scholar 

  186. Gauvin F, Toledano B, Champagne J, Lacroix J. Reactive hemophagocytic syndrome presenting as a component of multiple organ dysfunction syndrome. Crit Care Med. 2000;28:3341–5.

    CAS  PubMed  Google Scholar 

  187. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–91.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Proulx MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Proulx, F., Leteurtre, S., Joyal, J.S., Jouvet, P. (2014). Multiple Organ Dysfunction Syndrome. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6362-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6362-6_35

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6361-9

  • Online ISBN: 978-1-4471-6362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics