Skip to main content

Microcirculation and Pace Therapy

  • Chapter
  • First Online:
Plastic and Reconstructive Surgery

Abstract

Pulsed Acoustic Cellular Expression (PACE) is a novel technology utilizing Extracorporeal Shock Waves (ESW) in as a source of acoustic energy in a pulsed manner capable of delivering a cellular expression response. It has multiple indications in medicine but exact mechanism of PACE remains unknown. In our experiment in a large group of animals we checked influence of PACE on microcirculation in a well-known model of rats’ cremaster muscle. Results revealed that PACE therapy increases circulation in cremaster muscle and causes neovascularization and angiogenesis. It also has anti-inflammatory effect on the muscle. To achieve desired results PACE therapy has to be used periodically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCL2:

Chemokine (C-C motif) ligand 2

CCR2:

Chemokine (C-C motif) receptor 2

CXCL5:

Chemokine (C-X-C motif) ligand 5

eNOS:

Endothelial nitric oxide synthase

ESW:

Extracorporeal Shock Waves

ESWT:

Extracorporeal Shock Wave Technology

I/R:

Ischemia/Reperfusion

iNOS:

Inducible nitric oxide synthase

PACE:

Pulsed Acoustic Cellular Expression

RBC:

Red Blood Cells

VEGF:

Vascular endothelial growth factor

vWF:

von Willebrand factor

References

  1. Ogden JA, Toth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop. 2001;387:8–17.

    Article  PubMed  Google Scholar 

  2. Thiel M. Applications of shockwave in medicine. Clin Orthop. 2001;387:18–21.

    Article  PubMed  Google Scholar 

  3. Lingeman JE, Newman D, Mertz JH, et al. Extracorporeal shock wave lithotripsy: the Methodist Hospital of Indiana experience. J Urol. 1986;135:1134–7.

    CAS  PubMed  Google Scholar 

  4. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop. 2001;387:95–101.

    Article  PubMed  Google Scholar 

  5. Wang CJ, Liu HC, Fu TH. The effects of extracorporeal shock wave on acute high-energy long bone fractures of the lower extremity. Arch Orthop Trauma Surg. 2007;127:137–42.

    Article  PubMed  Google Scholar 

  6. Rompe JD, Hopf C, Kuellmer K, Heine J, Buerger R. Low-energy extracorporal shock wave therapy for persistent tennis elbow. Int Orthop. 1996;20:23–7.

    Article  CAS  PubMed  Google Scholar 

  7. Fukumoto Y, Ito A, Uwatoku T, Matoba T, Kishi T, Tanaka H, et al. Extracorporeal cardiac shock wave ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis. 2006;17:63–70.

    Article  PubMed  Google Scholar 

  8. Meirer R, Kamelger FS, Piza-Katzer H. Shock wave therapy: an innovative treatment method for partial thickness burns. Burns. 2005;31:921–2.

    Article  CAS  PubMed  Google Scholar 

  9. Wang CJ, Huang HY, Pai CH. Shock wave therapy enhanced neovascularization at the tendon-bond junction: an experiment in dogs. J Foot Ankle Surg. 2002;41:16–22.

    Article  CAS  PubMed  Google Scholar 

  10. Wang CJ, Wang FS, Yang KD, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res. 2003;21:984–9.

    Article  PubMed  Google Scholar 

  11. Meirer R, Kamelger FS, Huemer GM, Wanner S, Piza-Katzer H. Extracorporeal shock wave may enhance skin flap survival in an animal model. Br J Plast Surg. 2005;58:53–7.

    Article  CAS  PubMed  Google Scholar 

  12. Qi WN, Chen LE, Zhang L, Eu JP, Seaber AV, Urbaniak JR. Reperfusion injury in skeletal muscle is reduced in inducible nitric oxide synthase knockout mice. J Appl Physiol. 2004;97(4):1323–8. Epub 2004 Jun 4.

    Article  CAS  PubMed  Google Scholar 

  13. Adanali G, Ozer K, Siemionow M. Acute alterations in muscle flap microcirculation during tumor necrosis factor alpha-induced inflammation. Ann Plast Surg. 2001;47:652–9.

    Article  CAS  PubMed  Google Scholar 

  14. Unsal M, Gurunluoglu R, Babuccu O, Carnevale K, Siemionow M. Effect of long-term cyclosporine administration on muscle flap hemodynamics. Ann Plast Surg. 2002;48:305–11.

    Article  PubMed  Google Scholar 

  15. Ozer K, Adanali G, Siemionow M. Late effects of TNF-alpha-induced inflammation on the microcirculation of cremaster muscle flaps under intravital microscopy. J Reconstr Microsurg. 2002;18:37–45.

    Article  PubMed  Google Scholar 

  16. Adanali G, Ozer K, Siemionow M. Early and late effects of ischemic preconditioning on microcirculation of skeletal muscle flaps. Plast Reconstr Surg. 2002;109:1344–51.

    Article  PubMed  Google Scholar 

  17. Anderson GL, Acland RD, Siemionow M, McCabe SJ. Vascular isolation of the rat cremaster muscle. Microvasc Res. 1988;36:56–63.

    Article  CAS  PubMed  Google Scholar 

  18. Siemionow M, Moreira-Gonzalez A. The cremaster muscle as a microvascular research model. In: Knoelle G, editor. The encyclopedia of the microvasculature, vol. I. 1st ed. New York: Elsevier; 2005. p. 187–94.

    Google Scholar 

  19. Meirer R, Huemer GM, Oehlbauer M, Wanner S, Piza-Katzer H, Kamelger FS. Comparison of the effectiveness of gene therapy with vascular endothelial growth factor or shock wave therapy to reduce ischaemic necrosis in an epigastric skin flap model in rats. J Plast Reconstr Aesthet Surg. 2007;60:266–71.

    Article  CAS  PubMed  Google Scholar 

  20. Krokowicz L, Cwykiel J, Klimczak A, Mielniczuk M, Siemionow M. Pulsed acoustic cellular treatment induces expression of proangiogenic factors and chemokines in muscle flaps. J Trauma. 2010;69(6):1448–56.

    Article  CAS  PubMed  Google Scholar 

  21. Krokowicz L, Klimczak A, Cwykiel J, Mielniczuk M, Grykien C, Siemionow M. Pulsed acoustic cellular expression as a protective therapy against I/R injury in a cremaster muscle flap model. Microvasc Res. 2012;83(2):213–22.

    Article  PubMed  Google Scholar 

  22. Krokowicz L, Mielniczuk M, Drews M, Siemionow M. Long-term follow up of the effects of Extracorporeal Shockwave Therapy (ESWT) on microcirculation in a denervated muscle flap. Pol Przegl Chir. 2011;83(6):325–33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Krokowicz, L., Mielniczuk, M. (2015). Microcirculation and Pace Therapy. In: Siemionow, M. (eds) Plastic and Reconstructive Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-6335-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6335-0_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6334-3

  • Online ISBN: 978-1-4471-6335-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics