Skip to main content

Mathematical Modeling and Trichloroethylene

  • Chapter
  • First Online:
  • 871 Accesses

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Mathematical modeling has been used extensively to quantify and characterize the disposition, fate, and risk associated with the volatile organic chemical trichloroethylene (TCE). Here, we summarize many of these models that have been developed and applied across the exposure-dose-effect continuum, ranging from pharmacokinetic and pharmacodynamic models to quantitative structure-activity relationships. We conclude by reviewing some future directions in computational modeling that are increasingly used to inform an understanding of the adverse health effects associated with exposure to TCE, and introduce elements of a first-generation systems biology model of TCE-induced autoimmune disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADME:

Absorption, distribution, metabolism, and excretion

AIH:

Autoimmune hepatitis

ARR:

Arrest of mitosis in Aspergillus nidulans

AUC:

Area under the curve

BBDR:

Biologically-based dose response

BBPD:

Biologically-based pharmacodynamic

BDM:

Benchmark dose method

BEI:

Biological exposure index

CNS:

Central nervous system

CPK:

Compartmental pharmacokinetic

D37:

Measure of lethality in Aspergillus nidulans

DCA:

Dichloroacetic acid

DCVC:

S-(1,2-dichlorovinyl)-L-cysteine

DCVG:

S-(1,2-dichlorovinyl)glutathione

DIFF:

Difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital

DNAPL:

Dense nonaqueous phase liquid

EDR:

Exposure-dose-response

EPA:

US Environmental Protection Agency

HBA:

H-bonding acceptor ability

HBD:

H-bonding donor ability

IC50:

Chemical concentration that inhibits some endpoint in 50 % of the test animals in a given time

IRIS:

Integrated Risk Information System

Kow:

Octanol-water partition coefficient

LC50:

Chemical concentration that kills 50 % of the test animals in a given time

LCA:

Life cycle assessment

LEC:

Induction of chromosome malsegregation leading to aneuploidy in Aspergillus nidulans

LOEC:

Lowest observed effect concentration

logP:

The log of the ratio of concentration of neutral species in octanol divided the concentration of neutral species in water

MCL:

Maximum contaminant level

MOE:

Margin of exposure

MR:

Molar refractivity

MRL:

Minimal risk level

NAPL:

Non-aqueous phase liquid

NCPK:

Non-compartmental pharmacokinetic

PBPK:

Physiologically-based pharmacokinetic

PC:

Partition coefficient

PCE:

Tetrachloroethylene, perchloroethylene

PD:

Pharmacodynamics

PEL:

Permissible exposure limit

PK:

Pharmacokinetics

QSAR:

Quantitative structure activity relationship

RfC:

Reference concentration

t1/2 :

Chemical half life

TAI:

TCE-induced autoimmunity

TBARS:

Thiobarbituric acid reactive substance

TCA:

Trichloroacetic acid

TCE:

Trichloroethylene

TCOH:

Trichloroethanol

TLV:

Threshold limit value

VOC:

Volatile organic compound

References

  • Abbas R, Fisher JW (1997) A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice. Toxicol Appl Pharmacol 147:15–30

    CAS  PubMed  Google Scholar 

  • Albanese RA, Banks HT, Evans MV, Potter LK (2002) Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue. Bull Math Biol 64:97–131

    CAS  PubMed  Google Scholar 

  • Allen BC, Fisher JW (1993) Pharmacokinetic modeling of trichloroethylene and trichloroacetic acid in humans. Risk Anal 13:71–86

    CAS  PubMed  Google Scholar 

  • Andersen ME, Gargas ML, Clewell HJ, Severyn KM (1987) Quantitative evaluation of the metabolic interactions between trichloroethylene and 1,1-dichloroethylene in vivo using gas uptake methods. Toxicol Appl Pharmacol 89:149–157

    CAS  PubMed  Google Scholar 

  • Asher WE, Luo W, Campo KW, Bender DA, Robinson KW, Zogorski JS, Pankow JF (2007) Application of a source apportionment model in consideration of volatile organic compounds in an urban stream. Environ Toxicol Chem 26:1606–1613

    CAS  PubMed  Google Scholar 

  • Atteia O, Höhener P (2010) Semianalytical model predicting transfer of volatile pollutants from groundwater to the soil surface. Environ Sci Technol 44:6228–6232

    CAS  PubMed  Google Scholar 

  • Barton HA, Clewell HJ (2000) Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment. Environ Health Perspect 108(Suppl):323–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barton HA, Creech JR, Godin CS, Randall GM, Seckel CS (1995) Chloroethylene mixtures: pharmacokinetic modeling and in vitro metabolism of vinyl chloride, trichloroethylene, and trans-1,2-dichloroethylene in rat. Toxicol Appl Pharmacol 130:237–247

    CAS  PubMed  Google Scholar 

  • Béliveau M, Krishnan K (2005) A spreadsheet program for modeling quantitative structure-pharmacokinetic relationships for inhaled volatile organics in humans. SAR QSAR Environ Res 16:63–77

    PubMed  Google Scholar 

  • Bigazzi PE (1988) Autoimmunity induced by chemicals. J Toxicol Clin Toxicol 26:125–156

    CAS  PubMed  Google Scholar 

  • Bogen KT, Gold LS (1997) Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points. Regul Toxicol Pharmacol 25:26–42

    CAS  PubMed  Google Scholar 

  • Bois FY (2000) Statistical analysis of Clewell et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect 108(Suppl):307–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bois F, Gelman A, Jiang J, Maszle D, Zeise LG (1996) Population toxicokinetics of tetrachloroethylene. Arch Toxicol 70:347–355

    CAS  PubMed  Google Scholar 

  • Boyes WK, Evans MV, Eklund C, Janssen P, Simmons JE (2005) Duration adjustment of acute exposure guideline level values for trichloroethylene using a physiologically-based pharmacokinetic model. Risk Anal 25:677–686

    PubMed  Google Scholar 

  • Bruckner JV, Keys DA, Fisher JW (2004) The Acute Exposure Guideline Level (AEGL) program: applications of physiologically based pharmacokinetic modeling. J Toxicol Environ Health A 67:621–634

    CAS  PubMed  Google Scholar 

  • Brusseau ML, Nelson NT, Zhang Z, Blue JE, Rohrer J, Allen T (2007) Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ. J Contam Hydrol 90:21–40

    CAS  PubMed  Google Scholar 

  • Brusseau ML, Russo AE, Schnaar G (2012) Nonideal transport of contaminants in heterogeneous porous media: 9 – impact of contact time on desorption and elution tailing. Chemosphere 89:287–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bushnell PJ, Shafer TJ, Bale AS, Boyes WK, Simmons JE, Eklund C, Jackson TL (2005) Developing an exposure-dose-response model for the acute neurotoxicity of organic solvents: overview and progress on in vitro models and dosimetry. Environ Toxicol Pharmacol 19:607–614

    CAS  PubMed  Google Scholar 

  • Byczkowski JZ, Channel SR, Pravecek TL, Miller CR (1996) Mathematical model for chemically induced lipid peroxidation in precision-cut liver slices: computer simulation and experimental calibration. Comput Methods Programs Biomed 50:73–84

    CAS  PubMed  Google Scholar 

  • Byczkowski JZ, Channel SR, Miller CR (1999) A biologically based pharmacodynamic model for lipid peroxidation stimulated by trichloroethylene in vitro. J Biochem Mol Toxicol 13:205–214

    CAS  PubMed  Google Scholar 

  • Caldwell JC, Evans MV, Krishnan K (2012) Cutting edge PBPK models and analyses: providing the basis for future modeling efforts and bridges to emerging toxicology paradigms. J Toxicol 2012:852384

    PubMed Central  PubMed  Google Scholar 

  • Chambon JC, Broholm MM, Binning PJ, Bjerg PL (2010) Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system. J Contam Hydrol 112:77–90

    CAS  PubMed  Google Scholar 

  • Chambon JC, Binning PJ, Jørgensen PR, Bjerg PL (2011) A risk assessment tool for contaminated sites in low-permeability fractured media. J Contam Hydrol 124:82–98

    CAS  PubMed  Google Scholar 

  • Chen CW (2000) Biologically based dose-response model for liver tumors induced by trichloroethylene. Environ Health Perspect 108(Suppl):335–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen C, Farland W (1991) Incorporating cell proliferation in quantitative cancer risk assessment approaches, issues, and uncertainties. In: Butterworth B, Slaga T, Farland W, McClain RM (eds) Chemically induced cell proliferation: implication for risk assessment. John Wiley & Sons, New York

    Google Scholar 

  • Chen C-C, Shih M-C, Wu K-Y (2010) Exposure estimation using repeated blood concentration measurements. Stochastic Environ Res Risk Assess 24:445–454

    Google Scholar 

  • Chen C-C, Shih M-C, Wu K-Y (2012) Exposure reconstruction using a physiologically based toxicokinetic model with cumulative amount of metabolite in urine: a case study of trichloroethylene inhalation. Stochastic Environ Res Risk Assess 26:21–31

    Google Scholar 

  • Chiu WA (2011) Trichloroacetic acid: updated estimates of its bioavailability and its contribution to trichloroethylene-induced mouse hepatomegaly. Toxicology 285:114–125

    CAS  PubMed  Google Scholar 

  • Chiu WA, Okino MS, Evans MV (2009) Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Toxicol Appl Pharmacol 241:36–60

    CAS  PubMed  Google Scholar 

  • Clement TP, Sun Y, Hooker BS, Petersen JN (1998) Modeling multispecies reactive transport in ground water. Ground Water Monit Remediation 18:79–92

    CAS  Google Scholar 

  • Clewell HJ, Andersen ME (1994) Physiologically-based pharmacokinetic modeling and bioactivation of xenobiotics. Toxicol Ind Health 10:1–24

    CAS  PubMed  Google Scholar 

  • Clewell HJ, Andersen ME (2004) Applying mode-of-action and pharmacokinetic considerations in contemporary cancer risk assessments: an example with trichloroethylene. Crit Rev Toxicol 34:385–445

    CAS  PubMed  Google Scholar 

  • Clewell HJ, Gentry PR, Gearhart JM, Allen BC, Andersen ME (1995) Considering pharmacokinetic and mechanistic information in cancer risk assessments for environmental contaminants: examples with vinyl chloride and trichloroethylene. Chemosphere 31:2561–2578

    CAS  PubMed  Google Scholar 

  • Clewell HJ, Gentry PR, Gearhart JM (1997) Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment. J Toxicol Environ Health 52:475–515

    CAS  PubMed  Google Scholar 

  • Clewell HJ, Gentry PR, Covington TR, Gearhart JM (2000) Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect 108(Suppl):283–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen SM, Ellwein LB (1990) Proliferative and genotoxic cellular effects in 2-acetylaminofluorene bladder and liver carcinogenesis: biological modeling of the ED01 study. Toxicol Appl Pharmacol 104:79–93

    CAS  PubMed  Google Scholar 

  • Cohen Y, Ryan PA (1985) Multimedia modeling of environmental transport: trichloroethylene test case. Environ Sci Technol 19:412–417

    CAS  PubMed  Google Scholar 

  • Cojocel C, Beuter W, Müller W, Mayer D (1989) Lipid peroxidation: a possible mechanism of trichloroethylene-induced nephrotoxicity. Toxicology 55:131–141

    CAS  PubMed  Google Scholar 

  • Cooney C, Gilbert KM (2012) Toxicology, epigenetics, and autoimmunity. Toxicology and epigenetics. Wiley, Cooney and Gilbert (2012): West Sussex, United Kingdom, p 688

    Google Scholar 

  • Cooper GS, Makris SL, Nietert PJ, Jinot J (2009) Evidence of autoimmune-related effects of trichloroethylene exposure from studies in mice and humans. Environ Health Perspect 117:696–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cronin WJ, Oswald EJ, Shelley ML, Fisher JW, Flemming CD (1995) A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling. Risk Anal 15:555–565

    PubMed  Google Scholar 

  • Csanády GA, Göen T, Klein D, Drexler H, Filser JG (2010) Trichloroacetic acid in urine as biological exposure equivalent for low exposure concentrations of trichloroethene. Arch Toxicol 84:897–902

    PubMed  Google Scholar 

  • De Pillis LG, Radunskaya AE (2012) Best practices in mathematical modeling. Methods Mol Biol 929:51–74

    PubMed  Google Scholar 

  • Dobrev ID, Andersen ME, Yang RSH (2002) In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Environ Health Perspect 110:1031–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Droz PO, Fernández JG (1978) Trichloroethylene exposure. Biological monitoring by breath and urine analyses. Br J Ind Med 35:35–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Easterling M, Evans M, Kenyon E (2000) Comparative analysis of software for physiologically based pharmacokinetic modeling: simulation, optimization, and sensitivity analysis. Toxicol Mech Methods 10:203–229

    CAS  Google Scholar 

  • el-Masri HA, Constan AA, Ramsdell HS, Yang RS (1996a) Physiologically based pharmacodynamic modeling of an interaction threshold between trichloroethylene and 1,1-dichloroethylene in Fischer 344 rats. Toxicol Appl Pharmacol 141:124–132

    CAS  PubMed  Google Scholar 

  • El-Masri HA, Tessari JD, Yang RS (1996b) Exploration of an interaction threshold for the joint toxicity of trichloroethylene and 1,1-dichloroethylene: utilization of a PBPK model. Arch Toxicol 70:527–539

    CAS  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency, (2001) Health assessment document for trichloroethylene synthesis and characterization. Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency (2011) IRIS toxicological review of trichloroethylene. Washington, DC

    Google Scholar 

  • Evans MV, Chiu WA, Okino MS, Caldwell JC (2009) Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly. Toxicol Appl Pharmacol 236:329–340

    CAS  PubMed  Google Scholar 

  • Fernández JG, Droz PO, Humbert BE, Caperos JR (1977) Trichloroethylene exposure. Simulation of uptake, excretion, and metabolism using a mathematical model. Br J Ind Med 34:43–55

    PubMed Central  PubMed  Google Scholar 

  • Fisher JW, Allen BC (1993) Evaluating the risk of liver cancer in humans exposed to trichloroethylene using physiological models. Risk Anal 13:87–95

    CAS  PubMed  Google Scholar 

  • Fisher JW, Whittaker TA, Taylor DH, Clewell HJ, Andersen ME (1990) Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol 102:497–513

    CAS  PubMed  Google Scholar 

  • Fisher JW, Mahle D, Abbas R (1998) A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicol Appl Pharmacol 152:339–359

    CAS  PubMed  Google Scholar 

  • Gilbert KM (2010) Xenobiotic exposure and autoimmune hepatitis. Hepat Res Treat 2010(248157)

    Google Scholar 

  • Gilbert KM, Przybyla B, Pumford NR, Han T, Fuscoe J, Schnackenberg LK, Holland RD, Doss JC, Macmillan-Crow LA, Blossom SJ (2009) Delineating liver events in trichloroethylene-induced autoimmune hepatitis. Chem Res Toxicol 22:626–632

    CAS  PubMed  Google Scholar 

  • Greenberg MS, Burton GA, Fisher JW (1999) Physiologically based pharmacokinetic modeling of inhaled trichloroethylene and its oxidative metabolites in B6C3F1 mice. Toxicol Appl Pharmacol 154:264–278

    CAS  PubMed  Google Scholar 

  • Hack CE, Chiu WA, Jay Zhao Q, Clewell HJ (2006) Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites. Regul Toxicol Pharmacol 46:63–83

    CAS  PubMed  Google Scholar 

  • Haddad S, Tardif G-C, Tardif R (2006) Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes. J Toxicol Environ Health A 69:2095–2136

    CAS  PubMed  Google Scholar 

  • Hansch C, Leo A (1995) Exploring QSAR, vol 1, Fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  • Hissink EM, Bogaards JJP, Freidig AP, Commandeur JNM, Vermeulen NPE, Van Bladeren PJ (2002) The use of in vitro metabolic parameters and physiologically based pharmacokinetic (PBPK) modeling to explore the risk assessment of trichloroethylene. Environ Toxicol Pharmacol 11:259–271

    CAS  PubMed  Google Scholar 

  • Hu C, Jiang L, Geng C, Zhang X, Cao J, Zhong L (2008) Possible involvement of oxidative stress in trichloroethylene-induced genotoxicity in human HepG2 cells. Mutat Res 652:88–94

    CAS  PubMed  Google Scholar 

  • Isaacs KK, Evans MV, Harris TR (2004) Visualization-based analysis for a mixed-inhibition binary PBPK model: determination of inhibition mechanism. J Pharmacokinet Pharmacodyn 31:215–242

    CAS  PubMed  Google Scholar 

  • Johnson PC, Ettinger RA (1991) Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environ Sci Technol 25:1445–1452

    CAS  Google Scholar 

  • Johnson GR, Gupta K, Putz DK, Hu Q, Brusseau ML (2003) The effect of local-scale physical heterogeneity and nonlinear, rate-limited sorption/desorption on contaminant transport in porous media. J Contam Hydrol 64:35–58

    CAS  PubMed  Google Scholar 

  • Johnston JE, Gibson JM (2011) Probabilistic approach to estimating indoor air concentrations of chlorinated volatile organic compounds from contaminated groundwater: a case study in San Antonio, Texas. Environ Sci Technol 45:1007–1013

    CAS  PubMed  Google Scholar 

  • Keys DA, Bruckner JV, Muralidhara S, Fisher JW (2003) Tissue dosimetry expansion and cross-validation of rat and mouse physiologically based pharmacokinetic models for trichloroethylene. Toxicol Sci 76:35–50

    CAS  PubMed  Google Scholar 

  • Kim S, Kim D, Pollack GM, Collins LB, Rusyn I (2009) Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Toxicol Appl Pharmacol 238:90–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JK, Jung KH, Noh JH, Eun JW, Bae HJ, Xie HJ, Jang J-J, Ryu JC, Park WS, Lee JY, Nam SW (2011) Identification of characteristic molecular signature for volatile organic compounds in peripheral blood of rat. Toxicol Appl Pharmacol 250:162–169

    CAS  PubMed  Google Scholar 

  • Koizumi A (1989) Potential of physiologically based pharmacokinetics to amalgamate kinetic data of trichloroethylene and tetrachloroethylene obtained in rats and man. Br J Ind Med 46:239–249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koonin EV (2001) Computational genomics. Curr Biol 11:R155–R158

    CAS  PubMed  Google Scholar 

  • Li T, Schultz I, Keys DA, Campbell JL, Fisher JW (2008) Quantitative evaluation of dichloroacetic acid kinetics in human–a physiologically based pharmacokinetic modeling investigation. Toxicology 245:35–48

    CAS  PubMed  Google Scholar 

  • Liao KH, Tan Y-M, Clewell HJ (2007) Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene. Risk Anal 27:1223–1236

    PubMed  Google Scholar 

  • Lipscomb JC, Fisher JW, Confer PD, Byczkowski JZ (1998) In vitro to in vivo extrapolation for trichloroethylene metabolism in humans. Toxicol Appl Pharmacol 152:376–387

    CAS  PubMed  Google Scholar 

  • Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40:346–358

    CAS  PubMed  Google Scholar 

  • Lyons MA, Yang RSH, Mayeno AN, Reisfeld B (2008) Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. Environ Health Perspect 116:1040–1046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maslia ML, Aral MM, Williams RC, Williams-Fleetwood S, Hayes LC, Wilder LC (1996) Use of computational models to reconstruct and predict trichloroethylene exposure. Toxicol Ind Health 12:139–152

    CAS  PubMed  Google Scholar 

  • Mayeno AN, Yang RSH, Reisfeld B (2005) Biochemical reaction network modeling: predicting metabolism of organic chemical mixtures. Environ Sci Technol 39:5363–5371

    CAS  PubMed  Google Scholar 

  • Mayer B (2011) Bioinformatics for Omics data. Humana Press, Clifton

    Google Scholar 

  • McKone TE (1996) Alternative modeling approaches for contaminant fate in soils: uncertainty, variability, and reliability. Reliability Eng Syst Saf 54:165–181

    Google Scholar 

  • Mumtaz MM, Ray M, Crowell SR, Keys D, Fisher J, Ruiz P (2012) Translational research to develop a human PBPK models tool kit-volatile organic compounds (VOCs). J Toxicol Environ Health A 75:6–24

    CAS  PubMed  Google Scholar 

  • National Center for Environmental Assessment (2011) Exposure factors handbook. Washington, DC

    Google Scholar 

  • National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academies Press, Washington, DC

    Google Scholar 

  • Niederlehner BR, Cairns J, Smith EP (1998) Modeling acute and chronic toxicity of nonpolar narcotic chemicals and mixtures to Ceriodaphnia dubia. Ecotoxicol Environ Saf 39:136–146

    CAS  PubMed  Google Scholar 

  • Office of Solid Waste and Emergency Response (2012) EPA’s vapor intrusion database: evaluation and characterization of attenuation factors for chlorinated volatile organic compounds and residential buildings. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • Oostrom M, Hofstee C, Walker RC, Dane JH (1999) Movement and remediation of trichloroethylene in a saturated heterogeneous porous medium. J Contam Hydrol 37:159–178

    CAS  Google Scholar 

  • Parry JM, Parry EM, Bourner R, Doherty A, Ellard S, O’Donovan J, Hoebee B, De Stoppelaar JM, Mohn GR, Onfelt A, Renglin A, Schultz N, Söderpalm-Berndes C, Jensen KG, Kirsch-Volders M, Elhajouji A, Van Hummelen P, Degrassi F, Antoccia A, Cimini D, Izzo M, Tanzarella C, Adler ID, Kliesch U, Hess P (1996) The detection and evaluation of aneugenic chemicals. Mutat Res 353:11–46

    PubMed  Google Scholar 

  • Payne MP, Kenny LC (2002) Comparison of models for the estimation of biological partition coefficients. J Toxicol Environ Health A 65:897–931

    CAS  PubMed  Google Scholar 

  • Pederson BM, Thibodeaux LJ, Valsaraj KT, Reible DD (2001) Testing a multimedia compartmental model with monitoring data. Environ Toxicol Chem 20:2114–2121

    CAS  PubMed  Google Scholar 

  • Pleil JD (2009) Influence of systems biology response and environmental exposure level on between-subject variability in breath and blood biomarkers. Biomarkers 14:560–571

    CAS  PubMed  Google Scholar 

  • Price K, Krishnan K (2011) An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat. SAR QSAR Environ Res 22:107–128

    CAS  PubMed  Google Scholar 

  • Raunio H (2011) In silico toxicology – non-testing methods. Front Pharmacol 2:33

    PubMed Central  PubMed  Google Scholar 

  • Reddy M, Yang RS, Andersen ME III, Clewel HJ (2005) Physiologically based pharmacokinetic modeling: science and applications. Wiley-Interscience, Reddy et al. (2005): Hoboken, New Jersey

    Google Scholar 

  • Reisfeld B, Mayeno A (2012a) Computational toxicology, vol II, Methods in molecular biology. Humana Press, Clifton

    Google Scholar 

  • Reisfeld B, Mayeno A (2012b) Computational toxicology, vol I, Methods in molecular biology. Humana Press, Clifton

    Google Scholar 

  • Reisfeld B, Mayeno AN, Lyons M, Yang RSH (2007) Physiologically-based pharmacokinetic/pharmacodynamic modeling. In: Ekins S (ed) Computational toxicology: risk assessment for pharmaceutical and environmental chemicals. John Wiley & Sons, Hoboken

    Google Scholar 

  • Reisfeld B, Ivy JH, Lyons M, Wright J, Rogers J, Mayeno AN (2013) DoseSim: a tool for pharmacokinetic/pharmacodynamic analysis and dose reconstruction. Bioinformatics 29:400–401

    CAS  PubMed  Google Scholar 

  • Reynolds DA, Kueper BH (2001) Multiphase flow and transport in fractured clay/sand sequences. J Contam Hydrol 51:41–62

    CAS  PubMed  Google Scholar 

  • Rodriguez CE, Mahle DA, Gearhart JM, Mattie DR, Lipscomb JC, Cook RS, Barton HA (2007) Predicting age-appropriate pharmacokinetics of six volatile organic compounds in the rat utilizing physiologically based pharmacokinetic modeling. Toxicol Sci 98:43–56

    CAS  PubMed  Google Scholar 

  • Sato A, Endoh K, Kaneko T, Johanson G (1991) A simulation study of physiological factors affecting pharmacokinetic behaviour of organic solvent vapours. Br J Ind Med 48:342–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sexton K, Mongin SJ, Adgate JL, Pratt GC, Ramachandran G, Stock TH, Morandi MT (2007) Estimating volatile organic compound concentrations in selected microenvironments using time-activity and personal exposure data. J Toxicol Environ Health A 70:465–476

    CAS  PubMed  Google Scholar 

  • Shen D (2007) Toxicokinetics. In: Klaassen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons. McGraw-Hill Professional, Shen (2007): NY, New York, p 1280

    Google Scholar 

  • Simmons JE, Boyes WK, Bushnell PJ, Raymer JH, Limsakun T, McDonald A, Sey YM, Evans MV (2002) A physiologically based pharmacokinetic model for trichloroethylene in the male long-evans rat. Toxicol Sci 69:3–15

    CAS  PubMed  Google Scholar 

  • Simmons JE, Evans MV, Boyes WK (2005) Moving from external exposure concentration to internal dose: duration extrapolation based on physiologically based pharmacokinetic derived estimates of internal dose. J Toxicol Environ Health A 68:927–950

    CAS  PubMed  Google Scholar 

  • Simon TW (1997) Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene. Regul Toxicol Pharmacol 26:257–270

    CAS  PubMed  Google Scholar 

  • Sohn MD, McKone TE, Blancato JN (2004) Reconstructing population exposures from dose biomarkers: inhalation of trichloroethylene (TCE) as a case study. J Expo Anal Environ Epidemiol 14:204–213

    CAS  PubMed  Google Scholar 

  • Staats DA, Fisher JW, Connolly RB (1991) Gastrointestinal absorption of xenobiotics in physiologically based pharmacokinetic models. A two-compartment description. Drug Metab Dispos 19:144–148

    CAS  PubMed  Google Scholar 

  • Stenner RD, Merdink JL, Fisher JW, Bull RJ (1998) Physiologically-based pharmacokinetic model for trichloroethylene considering enterohepatic recirculation of major metabolites. Risk Anal 18:261–269

    CAS  PubMed  Google Scholar 

  • Thomas RS, Bigelow PL, Keefe TJ, Yang RS (1996) Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Am Ind Hyg Assoc J 57:23–32

    CAS  PubMed  Google Scholar 

  • USAF-EPA TCE PBPK workgroup (2004) Development of a physiologically-based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Report number AFRL-HE-WP-TR-2006-0049, Air Force Research Laboratory, Wright-Patterson AFB, Ohio

    Google Scholar 

  • Valcke M, Krishnan K (2011) Evaluation of the impact of the exposure route on the human kinetic adjustment factor. Regul Toxicol Pharmacol 59:258–269

    CAS  PubMed  Google Scholar 

  • Wang G, Cai P, Ansari GAS, Khan MF (2007) Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response. Toxicology 229:186–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Unger AJA, Parker BL (2012) Simulating an exclusion zone for vapour intrusion of TCE from groundwater into indoor air. J Contam Hydrol 140–141:124–138

    PubMed  Google Scholar 

  • Worth AP, Lapenna S, Serafimova R (2013) QSAR and metabolic assessment tools in the assessment of genotoxicity. Methods Mol Biol (Clifton, N.J.) 930:125–162

    Google Scholar 

  • Yokley KA, Evans MV (2007) An example of model structure differences using sensitivity analyses in physiologically based pharmacokinetic models of trichloroethylene in humans. Bull Math Biol 69:2591–2625

    CAS  PubMed  Google Scholar 

  • Yu S, Unger AJA, Parker B (2009a) Simulating the fate and transport of TCE from groundwater to indoor air. J Contam Hydrol 107:140–161

    CAS  PubMed  Google Scholar 

  • Yu S, Freitas JG, Unger AJA, Barker JF, Chatzis J (2009b) Simulating the evolution of an ethanol and gasoline source zone within the capillary fringe. J Contam Hydrol 105:1–17

    CAS  PubMed  Google Scholar 

  • Tan W, Chen C (1995) A nonhomogeneous stochastic model of carcinogenesis for assessing risk of environmental agents. In: Axelrod D, Kimmel M, Arino O (eds) Mathematical population dynamics. Wuerz Publishing, Winnipeg

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Arthur N. Mayeno for his contribution to the materials contained in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Reisfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Reisfeld, B., Ivy, J.H. (2014). Mathematical Modeling and Trichloroethylene. In: Gilbert, K., Blossom, S. (eds) Trichloroethylene: Toxicity and Health Risks. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6311-4_11

Download citation

Publish with us

Policies and ethics