Combined Motions of the Shoulder Joint Complex for Model-Based Simulation: Modeling of the Shoulder Rhythm (ShRm)

  • Victor SholukhaEmail author
  • Serge Van Sint Jan


The shoulder joint complex involves combined motions occurring simultaneously in the sternoclavicular, acromioclavicular, scapulothoracic and glenohumeral joints. The relationships between the displacements of the clavicle, scapula and humerus relative to the thorax have been previously widely studied in healthy subjects and have been reported as “the shoulder rhythm” (ShRm). This chapter describes multiple regression approaches for ShRm evaluation from shoulder kinematics obtained during in-vitro and in-vivo data collection. The obtained results can be used for ShRm modeling requiring physiologically acceptable joint behavior.


Shoulder rhythm Joint modeling Multiple regression Multibody kinematics. 



This work was funded by the European Commission through the LHDL (IST-2004-026932) and DHErgo (SCP7-GA-2008-218525) projects, and by the Brussels Government through the ICT4Rehab project (2010/PFS-ICT03). Our gratitude also goes to Dr. P.-M. Dugailly, Dr. P. Salvia, Mr. H. Bajou et Mr. J-L. Sterckx for their assistance in the data collection related to this work.


  1. 1.
    Wu, G., van der Helm, F. C. T., Veeger, H. E. J., Makhsous, M., Van Roy, P., Anglin, C., et al. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics, 38, 981–992.Google Scholar
  2. 2.
    van der Helm, F. C. T., & Pronk, G. M. (1995). Three-dimensional recording and description of motions of the shoulder mechanism. Journal of Biomechanical Engineering, 117, 27–40.CrossRefGoogle Scholar
  3. 3.
    Veeger, H. E. J., & van der Helm, F. C. T. (2007). Shoulder function: The perfect compromise between mobility and stability. Journal of Biomechanics, 40, 2119–2129.CrossRefGoogle Scholar
  4. 4.
    Altmann, S. (1989). Hamilton, Rodrigues, and the Quaternion scandal. Mathematics Magazine, 62, 291–308.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Anglin, C., & Wyss, U. (2000). Review of arm motion analyses. Proceedings of the Institution of Mechanical Engineers, Part H. Journal of Engineering in Medicine, 214, 541–555.CrossRefGoogle Scholar
  6. 6.
    Bey, M. J., Zauel, R., Brock, S. K., & Tashman, S. (2006). Validation of a new model-based tracking technique for measuring three-dimensional, In vivo Glenohumeral joint kinematics. Journal of Biomechanical Engineering, 128, 604–609.CrossRefGoogle Scholar
  7. 7.
    Buckley, M. A., Yardley, A., Johnson, G. R., & Carus, D. A. (1996). Dynamics of the upper limb during performance of the tasks of everyday living AOa review of the current knowledge base. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part H. Journal of Engineering in Medicine 1989–1996, 203—-210(210), 241–247.CrossRefGoogle Scholar
  8. 8.
    Cappozzo, A., & Della Croce, U. (2005). Human movement analysis using stereophotogrammetry: Part 1: Theoretical background. Gait & Posture, 21, 186–196.Google Scholar
  9. 9.
    Cutti, A., & Veeger, H. (2009). Shoulder biomechanics: Today’s consensus and tomorrow’s perspectives. Medical and Biological Engineering and Computing, 47, 463–466.CrossRefGoogle Scholar
  10. 10.
    de Groot, J. H. (1999). The scapulo-humeral rhythm: Effects of 2-D roentgen projection. Clinical Biomechanics, 14, 63–68.CrossRefGoogle Scholar
  11. 11.
    Hill, A., Bull, A., Dallalana, R., Wallace, A., & Johnson, G. (2007). Glenohumeral motion: Review of measurement techniques. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 1137–1143.CrossRefGoogle Scholar
  12. 12.
    Hill, A. M., Bull, A. M. J., Richardson, J., McGregor, A. H., Smith, C. D., Barrett, C. J., et al. (2008). The clinical assessment and classification of shoulder instability. Current Orthopaedics, 22, 208–225.Google Scholar
  13. 13.
    Hill, A. M., Bull, A. M. J., Wallace, A. L., & Johnson, G. R. (2008). Qualitative and quantitative descriptions of glenohumeral motion. Gait & Posture, 27, 177–188.Google Scholar
  14. 14.
    Lugo, R., Kung, P., & Ma, C. B. (2008). Shoulder biomechanics. European Journal of Radiology, 68, 16–24.CrossRefGoogle Scholar
  15. 15.
    Massimini, D. F., Warner, J. J. P., & Li, G. (2011). Non-invasive determination of coupled motion of the scapula and humerus-An in-vitro validation. Journal of Biomechanics, 44, 408–412.CrossRefGoogle Scholar
  16. 16.
    Veeger, H. E. J., van der Helm, F. C. T., Van der Woude, L. H. V., Pronk, G. M., & Rozendal, R. H. (1991). Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism. Journal of Biomechanics, 24, 615–629.CrossRefGoogle Scholar
  17. 17.
    Bourne, D. A., Choo, A. M. T., Regan, W. D., MacIntyre, D. L., & Oxland, T. R. (2007). Three-dimensional rotation of the scapula during functional movements: An in vivo study in healthy volunteers. Journal of Shoulder and Elbow Surgery, 16, 150–162.CrossRefGoogle Scholar
  18. 18.
    Braman, J. P., Engel, S. C., LaPrade, R. F., & Ludewig, P. M. (2011). In vivo assessment of scapulohumeral rhythm during unconstrained overhead reaching in asymptomatic subjects. Journal of Shoulder and Elbow Surgery, 18, 960–967.CrossRefGoogle Scholar
  19. 19.
    Karduna, A. R., McClure, P. W., Michener, L. A., & Sennett, B. (2001). Dynamic measurements of three-dimensional scapular kinematics: A validation study. Journal of Biomechanical Engineering, 123, 184–190.CrossRefGoogle Scholar
  20. 20.
    Ludewig, P. M., Phadke, V., Braman, J. P., Hassett, D. R., Cieminski, C. J., & LaPrade, R. F. (2009). Motion of the shoulder complex during multiplanar humeral elevation. Journal of Bone and Joint Surgery, 91, 378–389.CrossRefGoogle Scholar
  21. 21.
    Ludewig, P. M., Hassett, D. R., LaPrade, R. F., Camargo, P. R., & Braman, J. P. (2010). Comparison of scapular local coordinate systems. Clinical Biomechanics, 25, 415–421.CrossRefGoogle Scholar
  22. 22.
    Lunden, J. B., Braman, J. P., LaPrade, R. F., & Ludewig, P. M. (2010). Shoulder kinematics during the wall push-up plus exercise. Journal of Shoulder and Elbow Surgery, 19, 216–223.CrossRefGoogle Scholar
  23. 23.
    McClure, P. W., Michener, L. A., Sennett, B. J., & Karduna, A. R. (2001). Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. Journal of Shoulder and Elbow Surgery, 10, 269–277.CrossRefGoogle Scholar
  24. 24.
    Fung, M., Kato, S., Barrance, P. J., Elias, J. J., McFarland, E. G., Nobuhara, K., et al. (2001). Scapular and clavicular kinematics during humeral elevation: A study with cadavers. Journal of Shoulder and Elbow Surgery, 10, 278–285.CrossRefGoogle Scholar
  25. 25.
    Gerber, C., Werner, C. M. L., Macy, J. C., Jacob, H. A. C., & Nyffeler, R. W. (2003). Effect of selective capsulorrhaphy on the passive range of motion of the glenohumeral joint. Journal of Bone and Joint Surgery, 85, 48–55.Google Scholar
  26. 26.
    Graichen, H., Stammberger, T., Bonel, H., Karl-Hans, E., Reiser, M., & Eckstein, F. (2000). Glenohumeral translation during active and passive elevation of the shoulder—a 3D open-MRI study. Journal of Biomechanics, 33, 609–613.CrossRefGoogle Scholar
  27. 27.
    Harryman, D. T., Sidles, J. A., Clark, J. M., McQuade, K. J., Gibb, T. D., & Matsen, F. A. (1990). Translation of the humeral head on the glenoid with passive glenohumeral motion. Journal of Bone and Joint Surgery, 72, 1334–1343.Google Scholar
  28. 28.
    Holzbaur, K. R. S., Murray, W. M., & Delp, S. L. (2005). A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of Biomedical Engineering, 33, 829–840.CrossRefGoogle Scholar
  29. 29.
    Karduna, A. R., Kerner, P. J., & Lazarus, M. D. (2007). Contact forces in the subacromial space: Effects of scapular orientation. Journal of Shoulder and Elbow Surgery, 14, 393–399.CrossRefGoogle Scholar
  30. 30.
    Meskers, C. G. M., van der Helm, F. C. T., Rozendaal, L. A., & Rozing, P. M. (1997). In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. Journal of Biomechanics, 31, 93–96.CrossRefGoogle Scholar
  31. 31.
    van der Helm, F. C. T., Veeger, H. E. J., Pronk, G. M., Van der Woude, L. H. V., & Rozendal, R. H. (1992). Geometry parameters for musculoskeletal modelling of the shoulder system. Journal of Biomechanics, 25, 129–144.CrossRefGoogle Scholar
  32. 32.
    van der Helm, F. C. T. (1994). A finite element musculoskeletal model of the shoulder mechanism. Journal of Biomechanics, 27, 551–569.Google Scholar
  33. 33.
    van der Helm, F. C. T. (1994). Analysis of the kinematic and dynamic behavior of the shoulder mechanism. Journal of Biomechanics, 27, 527–550.Google Scholar
  34. 34.
    Bey, M. J., Kline, S. K., Zauel, R., Lock, T. R., & Kolowich, P. A. (2008). Measuring dynamic in-vivo glenohumeral joint kinematics: Technique and preliminary results. Journal of Biomechanics, 41, 711–714.CrossRefGoogle Scholar
  35. 35.
    Matsuki, K., Matsuki, K. O., Mu, S., Yamaguchi, S., Ochiai, N., Sasho, et al. (2011). In vivo 3-dimensional analysis of scapular kinematics: Comparison of dominant and nondominant shoulders. Journal of Shoulder and Elbow Surgery, 20(4), 659–665.Google Scholar
  36. 36.
    Meskers, C. G. M., Fraterman, H., van der Helm, F. C. T., Vermeulen, H. M., & Rozing, P. M. (1999). Calibration of the Flock of Birds electromagnetic tracking device and its application in shoulder motion studies. Journal of Biomechanics, 32, 629–633.CrossRefGoogle Scholar
  37. 37.
    Meskers, C. G. M., van de Sande, M. A. J., & de Groot, J. H. (2007). Comparison between tripod and skin-fixed recording of scapular motion. Journal of Biomechanics, 40, 941–946.CrossRefGoogle Scholar
  38. 38.
    Nikooyan, A. A., Veeger, H. E. J., Westerhoff, P., Graichen, F., Bergmann, G., & van der Helm, F. C. T. (2010). Validation of the delft shoulder and elbow model using in-vivo glenohumeral joint contact forces. Journal of Biomechanics, 43, 3007–3014.CrossRefGoogle Scholar
  39. 39.
    Nishinaka, N., Tsutsui, H., Mihara, K., Suzuki, K., Makiuchi, D., Kon, Y., et al. (2003). Determination of in vivo glenohumeral translation using fluoroscopy and shape-matching techniques. Journal of Shoulder and Elbow Surgery, 17, 319–322.CrossRefGoogle Scholar
  40. 40.
    Phadke, V., Braman, J. P., LaPrade, R. F., & Ludewig, P. M. (2011). Comparison of glenohumeral motion using different rotation sequences. Journal of Biomechanics, 44(4), 700–705.Google Scholar
  41. 41.
    Barnett, N. D., Duncan, R. D. D., & Johnson, G. R. (1999). The measurement of three dimensional scapulohumeral kinematics—a study of reliability. Clinical Biomechanics, 14, 287–290.CrossRefGoogle Scholar
  42. 42.
    Brochard, S., Lempereur, M., & Remy-Neris, O. (2011). Accuracy and reliability of three methods of recording scapular motion using reflective skin markers. Proceedings of the Institution of Mechanical Engineers, Part H. Journal of Engineering in Medicine, 225, 100–105.Google Scholar
  43. 43.
    Brochard, S., Lempereur, M., & Remy-Neris, O. (2011). Double calibration: An accurate, reliable and easy-to-use method for 3D scapular motion analysis. Journal of Biomechanics, 44(4), 751–754.Google Scholar
  44. 44.
    Meskers, C. G. M., Vermeulen, H. M., de Groot, J. H., van der Helm, F. C. T., & Rozing, P. M. (1998). 3D shoulder position measurements using a six-degree-of-freedom electromagnetic tracking device. Clinical Biomechanics, 13, 280–292.CrossRefGoogle Scholar
  45. 45.
    Pascoal, A. G., van der Helm, F. F. C. T., Pezarat Correia, P., & Carita, I. (2000). Effects of different arm external loads on the scapulo-humeral rhythm. Clinical Biomechanics, 15, S21–S24.CrossRefGoogle Scholar
  46. 46.
    Price, C. I. M., Franklin, P., Rodgers, H., Curless, R. H., & Johnson, G. R. (2000). Active and passive scapulohumeral movement in healthy persons: A comparison. Archives of Physical Medicine and Rehabilitation, 81, 28–31.Google Scholar
  47. 47.
    Stokdijk, M., Nagels, J., & Rozing, P. M. (2000). The glenohumeral joint rotation centre in vivo. Journal of Biomechanics, 33, 1629–1636.CrossRefGoogle Scholar
  48. 48.
    van Andel, C. J., Wolterbeek, N., Doorenbosch, C. A. M., Veeger, D., & Harlaar, J. (2008). Complete 3D kinematics of upper extremity functional tasks. Gait & Posture, 27, 120–127.CrossRefGoogle Scholar
  49. 49.
    van Andel, C., van Hutten, K., Eversdijk, M., Veeger, D., & Harlaar, J. (2009). Recording scapular motion using an acromion marker cluster. Gait & Posture, 29, 123–128.CrossRefGoogle Scholar
  50. 50.
    Salvia, P., Jan, S. V. S., Crouan, A., Vanderkerken, L., Moiseev, F., Sholukha, V., et al. (2009). Precision of shoulder anatomical landmark calibration by two approaches: A CAST-like protocol and a new anatomical palpator method. Gait & Posture, 29, 587–591.CrossRefGoogle Scholar
  51. 51.
    Braman, J., Thomas, B., LaPrade, R., Phadke, V., & Ludewig, P. (2010). Three-dimensional in vivo kinematics of an osteoarthritic shoulder before and after total shoulder arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 18, 1774–1778.CrossRefGoogle Scholar
  52. 52.
    Crosbie, J., Kilbreath, S. L., Hollmann, L., & York, S. (2008). Scapulohumeral rhythm and associated spinal motion. Clinical Biomechanics, 23, 184–192.CrossRefGoogle Scholar
  53. 53.
    de Groot, J. H. (1997). The variability of shoulder motions recorded by means of palpation. Clinical Biomechanics, 12, 461–472.CrossRefGoogle Scholar
  54. 54.
    de Groot, J. H., Valstar, E. R., & Arwert, H. J. (1998). Velocity effects on the scapulo-humeral rhythm. Clinical Biomechanics, 13, 593–602.CrossRefGoogle Scholar
  55. 55.
    Fayad, F., Hoffmann, G., Hanneton, S., Yazbeck, C., Lefevre-colau, M. M., Poiraudeau, S., et al. (2006). 3-D scapular kinematics during arm elevation: Effect of motion velocity. Clinical Biomechanics, 21, 932–941.CrossRefGoogle Scholar
  56. 56.
    Forte, F. C., Peduzzi de Castro, M., & Mahnic de Toledo, J. (2009). Scapular kinematics and scapulohumeral rhythm during resisted shoulder abduction—Implications for clinical practice. Physical Therapy in Sport, 10, 105–111.CrossRefGoogle Scholar
  57. 57.
    Garofalo, P., Cutti, A., Filippi, M., Cavazza, S., Ferrari, A., Cappello, A., et al. (2009). Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus in clinical settings. Medical and Biological Engineering and Computing, 47, 475–486.CrossRefGoogle Scholar
  58. 58.
    Hogfors, C., Peterson, B., Sigholm, G., & Herberts, P. (1991). Biomechanical model of the human shoulder joint-II. The shoulder rhythm. Journal of Biomechanics, 24, 699–709.CrossRefGoogle Scholar
  59. 59.
    Kon, Y., Nishinaka, N., Gamada, K., Tsutsui, H., & Banks, S. A. (2011). The influence of handheld weight on the scapulohumeral rhythm. Journal of Shoulder and Elbow Surgery, 17, 943–946.CrossRefGoogle Scholar
  60. 60.
    Cappozzo, A., Catani, F., & Leardini, A. (1995). Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clinical Biomechanics, 10, 171–178.CrossRefGoogle Scholar
  61. 61.
    Blankevoort, L., Huiskes, R., & de Lange, A. (1990). Helical axes of passive knee joint motions. Journal of Biomechanics, 23, 1219–1229.CrossRefGoogle Scholar
  62. 62.
    Challis, J. H. (1995). A procedure for determining rigid body transformation parameters. Journal of Biomechanics, 28, 733–737.CrossRefGoogle Scholar
  63. 63.
    Cheze, L., Fregly, B. J., & Dimnet, J. (1998). Determination of joint functional axes from noisy marker data using the finite helical axis. Human Movement Science, 17, 1–15.CrossRefGoogle Scholar
  64. 64.
    Cheze, L. (2000). Comparison of different calculations of three-dimensional joint kinematics from video-based system data. Journal of Biomechanics, 33, 1695–1699.CrossRefGoogle Scholar
  65. 65.
    Koh, T. J., Grabiner, M. D., & Brems, J. J. (1998). Three-dimensional in-vivo kinematics of the shoulder during humeral elevation. Journal of Applied Biomechanics, 14, 312–326.Google Scholar
  66. 66.
    Spoor, C. W., & Veldpaus, F. E. (1980). Rigid body motion calculated from spatial co-ordinates of markers. Journal of Biomechanics, 13, 391–393.CrossRefGoogle Scholar
  67. 67.
    van den Bogert, A. J., Reinschmidt, C., & Lundberg, A. (2008). Helical axes of skeletal knee joint motion during running. Journal of Biomechanics, 41, 1632–1638.CrossRefGoogle Scholar
  68. 68.
    Veldpaus, F. E., Woltring, H. J., & Dortmans, L. J. (1988). A least-squares algorithm for the equiform transformation from spatial marker co-ordinates. Journal of Biomechanics, 21, 45–54.CrossRefGoogle Scholar
  69. 69.
    Woltring, H. J., Huiskes, R., de, L. A., & Veldpaus, F. E. (1985). Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. Journal of Biomechanics, 18, 379–389.CrossRefGoogle Scholar
  70. 70.
    Woltring, H. J. (1991). Representation and calculation of 3-D joint movement. Human Movement Science, 10, 603–616.CrossRefGoogle Scholar
  71. 71.
    Woltring, H. J. (1994). 3-D attitude representation of human joints: A standardization proposal. Journal of Biomechanics, 27, 1399–1414.CrossRefGoogle Scholar
  72. 72.
    Sholukha, V., Leardini, A., Salvia, P., Rooze, M., & Van Sint Jan, S. (2006). Double-step registration of in vivo stereophotogrammetry with both in vitro 6-DOFs electrogoniometry and CT medical imaging. Journal of Biomechanics, 39, 2087–2095.CrossRefGoogle Scholar
  73. 73.
    Van Sint Jan, S. (2007). Color atlas of skeletal landmark definitions. Guidelines for reproducible manual and virtual palpations. Edinburg: Churchill Livingstone–Elsevier.Google Scholar
  74. 74.
    Sholukha, V., Van Sint Jan, S., Snoeck, O., Salvia, P., Moiseev, F., & Rooze, M. (2009). Prediction of joint center location by customizable multiple regressions: Application to clavicle, scapula and humerus. Journal of Biomechanics, 42, 319–324.CrossRefGoogle Scholar
  75. 75.
    Escamilla, R., Yamashiro, K., Paulos, L., & Andrews, J. (2009). Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Medicine, 39, 663–685.CrossRefGoogle Scholar
  76. 76.
    Konrad, G. G., Jolly, J. T., Labriola, J. E., McMahon, P. J., & Debski, R. E. (2006). Thoracohumeral muscle activity alters glenohumeral joint biomechanics during active abduction. Journal of Orthopaedic Research, 24, 748–756.CrossRefGoogle Scholar
  77. 77.
    Van Sint Jan, S., Salvia, P., Sholukha, V., & Rooze, M. (2006). Strict palpation guidelines of skeletal landmarks for more accurate data registration, data representation and data comparison. Journal of Biomechanics, 39, S77–S78.Google Scholar
  78. 78.
    Van Sint Jan, S., Sobzack, S., Dugailly, P. M., Feipel, V., Lef vre, P., Lufimpadio, J. L., et al. (2006). Low-dose computed tomography: A solution for in vivo medical imaging and accurate patient-specific 3D bone modeling? Clinical Biomechanics, 21, 992–998.CrossRefGoogle Scholar
  79. 79.
    Van Sint Jan, S., Salvia, P., Hilal, I., Sholukha, V., Rooze, M., & Clapworthy, G. (2002). Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling. Journal of Biomechanics, 35, 1475–1484.CrossRefGoogle Scholar
  80. 80.
    Viceconti, M., Zannoni, C., Testi, D., Petrone, M., Perticoni, S., Quadrani, P., et al. (2007). The multimod application framework: A rapid application development tool for computer aided medicine. Computer Methods and Programs in Biomedicine, 85(2), 138–151.CrossRefGoogle Scholar
  81. 81.
    Sholukha, V., Chapman, T., Salvia, P., Moiseev, F., Euran, F., & Rooze, M. (2011). Femur shape prediction by multiple regression based on quadric surface fitting. Journal of Biomechanics, 44, 712–718.CrossRefGoogle Scholar
  82. 82.
    Sholukha, V., Bonnechere, B., Salvia, P., Moiseev, F., Rooze, M., & Van Sint Jan, S. (2013). Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems. Journal of Biomechanics, 46(14), 2363–2371.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Laboratory of Anatomy, Biomechanics and Organogenesis (LABO) Université Libre de BruxellesBrusselsBelgium

Personalised recommendations