Contact Modeling and Collision Detection in Human Joints

  • Ehsan ArbabiEmail author
  • Daniel Thalmann


The precise evaluation of joint movements, using reconstructed three-dimensional models of the joint tissues, is an important issue in many medical diagnosis and surgery planning. In order to achieve appropriate results by analyzing 3D joint models, efficient and accurate evaluation of contact among the virtual tissues is critical. In this chapter, some recent works regarding contact modeling and collision detection in human joints have been covered. First, two new different fast collision detection methods, suitable for evaluating human joints, have been explained. These methods take advantage of the relative proximity and the nature of the movement in human joints, in order to discard unnecessary calculations. Later, two medical applications based on these collision detection methods, which involve finding the maximum range of motion in human joints and also evaluating joint diseases (i.e. Femoroacetabular Impingements) have been discussed. Finally, the results of an investigation of the sensitivity of the joint contact evaluation to the estimated center of rotation, again by exploiting the explained collision detection methods, have been presented. Many of the mentioned applications and investigations have been examined by using 3D models of human hip joints; however, due to the nature of the methods, they can be applied to other types of human joints too.


Computer graphics 3D meshes Human joints Hip joints Collision detection Penetration depth Joint center of rotation Range of motion Femoroacetabular impingement (FAI) 


  1. 1.
    Martin, H. D. (2005). Clinical examination of the hip. Operative Techniques in Orthopaedics, 15, 177–181.CrossRefGoogle Scholar
  2. 2.
    Tannast, M., Kubiak-Langer, M., Langlotz, F., Puls, M., Murphy, S. B., & Siebenrock, K. A. (2007). Noninvasive three-dimensional assessment of femoroacetabular impingement. Journal of Orthopaedic Research, 25(1), 122–131.CrossRefGoogle Scholar
  3. 3.
    Arbabi, E., Boulic, R., & Thalmann, D. (2007). A fast method for finding range of motion in the human joints. Paper presented at the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 2007.Google Scholar
  4. 4.
    Chegini, S., Beck, M., & Ferguson, S. J. (2006). Femoro acetabular impingement as a possible initiator of cartilage degeneration. Paper presented at the 7th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Antibes, France, 2006.Google Scholar
  5. 5.
    Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., & Fedkiw, R. (2005). Creating and simulating skeletal muscle from the visible human data set. IEEE Transaction on Visualization and Computer Graphics, 11(3), 317–328.CrossRefGoogle Scholar
  6. 6.
    Armand, M., Lepistö, J. V. S., Merkle, A. C., Tallroth, K., Liu, X., Taylor, R. H., et al. (2004). Computer-aided orthopedic surgery with near-real-time biomechanical feedback. Johns Hopkins Apl Technical Digest, 25, 242–252.Google Scholar
  7. 7.
    Kang, M., Sadri, H., Moccozet, L., & Magnenat-Thalmann, N. (2003). Hip joint modeling for the control of the joint center and the range of motions. Paper presented at the 5th IFAC Symposium on Modeling and Control in Biomedical Systems, 2003.Google Scholar
  8. 8.
    Scifert, C. F., Brown, T. D., Pedersen, D. R., & Callaghan, J. J. (1998). A finite element analysis of factors influencing total hip dislocation. Clinical Orthopaedics and Related Research, 355, 152–162.CrossRefGoogle Scholar
  9. 9.
    Genda, E., Konishi, N., Hasegawa, Y., & Miura, T. (1995). A computer simulation study of normal and abnormal hip joint contact pressure. Archives of Orthopaedic and Trauma Surgery, 114, 202–206.CrossRefGoogle Scholar
  10. 10.
    Gilles, B., Moccozet, L., & Magnenat-Thalmann, N. (2006). Anatomical modelling of the musculoskeletal system from MRI. Paper presented at the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2006.Google Scholar
  11. 11.
    Camomilla, V., Cereatti, A., Vannozzi, G., & Cappozzo, A. (2006). An optimized protocol for hip joint centre determination using the functional method. Journal of Biomechanics, 39, 1096–1106.CrossRefGoogle Scholar
  12. 12.
    Rapperport, D. J., Carter, D. R., & Schurman, D. J. (1985). Contact finite element stress analysis of the hip joint. Journal of Orthopaedic Research, 3, 435–446.CrossRefGoogle Scholar
  13. 13.
    Arbabi, E. (2009). Contact modeling and collision detection in human joints. PhD Thesis, École Polytechnique Fédérale de Lausanne, Switzerland.Google Scholar
  14. 14.
    Arbabi, E., Boulic, R., & Thalmann, D. (2009). Fast collision detection methods for joint surfaces. Journal of Biomechanics, 42(2), 91–99.CrossRefGoogle Scholar
  15. 15.
    Arbabi, E., Chegini, S., Boulic, R., Tannast, M., Ferguson, S. J., & Thalmann, D. (2010). The penetration depth method—a novel real time strategy for evaluating femoro-acetabular impingement. Journal of Orthopaedic Research, 28(7), 880–886.Google Scholar
  16. 16.
    Arbabi, E., Schmid, J., Boulic, R., Thalmann, D., & Magnenat-Thalmann, N. (2012). Sensitivity of hip tissues contact evaluation to the methods used for estimating the hip joint center of rotation. Journal of Medical and Biological Engineering and Computing, 50(6), 595–604.CrossRefGoogle Scholar
  17. 17.
    Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D., & Gross, M. (2003). Optimized spatial hashing for collision detection of deformable objects. Paper presented at the Vision, Modeling, Visualization, 2003.Google Scholar
  18. 18.
    Maciel, A., Boulic, R., & Thalmann, D. (2007). Efficient collision detection within deforming spherical sliding contact. IEEE Transaction on Visualization and Computer Graphics, 13(3), 518–529.CrossRefGoogle Scholar
  19. 19.
    Murphy, S., Tannast, M., Kim, Y. J., Buly, R., & Millis, M. B. (2004). Debridement of the adult hip for femoroacetabular impingement indications and preliminary clinical results. Clinical Orthopaedics and Related Research, 429, 178–181.CrossRefGoogle Scholar
  20. 20.
    Ganz, R., Parvizi, J., Beck, M., Leunig, M., Nötzli, H., & Siebenrock, K. A. (2003). Femoroacetabular impingement: A cause for osteoarthritis of the hip. Clinical Orthopaedics and Related Research, 407, 112–120.Google Scholar
  21. 21.
    Günther, K. P., Thielemann, F., Hartmann, A., & Bernstein, P. (2008). Combined hip-dysplasia and femoroacetabular impingement: Diagnosis and simultaneous surgical treatment. Orthopäde, 37, 577–586.CrossRefGoogle Scholar
  22. 22.
    Kubiak-Langer, M., Tannast, M., Murphy, S. B., Siebenrock, K. A., & Langlotz, F. (2007). Range of motion in anterior femoroacetabular impingement. Clinical Orthopaedics and Related Research, 458, 117–124.Google Scholar
  23. 23.
    Chegini, S., Beck, M., & Ferguson, S. J. (2008). The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: A finite element analysis. Journal of Orthopaedic Research, 27(2), 195–201.CrossRefGoogle Scholar
  24. 24.
    Russell, M. E., Shivanna, K. H., Grosland, N. M., & Pedersen, D. R. (2006). Cartilage contact pressure elevations in dysplastic hips: A chronic overload model. Journal of Orthopaedic Surgery, 3, 1–6.Google Scholar
  25. 25.
    Michaeli, D. A., Murphy, S. B., & Hipp, J. A. (1997). Comparison of predicted and measured contact pressures in normal and dysplastic hips. Medical Engineering & Physics, 19(2), 180–186.CrossRefGoogle Scholar
  26. 26.
    Hipp, J. A., Sugano, N., Millis, M. B., & Murphy, S. B. (1999). Planning aetabular redirection osteotomies based on joint contact pressures. Clinical Orthopaedics and Related Research, 364, 134–143.CrossRefGoogle Scholar
  27. 27.
    Tannast, M., Siebenrock, K. A., & Anderson, S. E. (2007). Femoroacetabular impingement: Radiographic diagnosis-what the radiologist should know. American Journal of Roentgenology, 188(6), 1540–1552.CrossRefGoogle Scholar
  28. 28.
    Wiberg, G. (1939). Studies on dysplastic acetabular and congenital subluxation of the hip joint: With special reference to the complication of osteo-arthritis. Acta Chirurgica Scandinavica, 58, 7–38.Google Scholar
  29. 29.
    Nötzli, H. P., Wyss, T. F., Stoecklin, C. H., Schmid, M. R., Treiber, K., & Hodler, J. (2002). The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. The Journal of Bone and Joint Surgery, 84, 556–560.CrossRefGoogle Scholar
  30. 30.
    Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., et al. (2001). Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34, 859–871.CrossRefGoogle Scholar
  31. 31.
    Mardones, R. M., Gonzalez, C., Chen, Q., Zobitz, M., Kaufman, K. R., & Trousdale, R. T. (2005). Surgical treatment of femoroacetabular impingement: Evaluation of the effect of the size of the resection. Journal of Bone & Joint Surgery, 87-A, 273–279.Google Scholar
  32. 32.
    Bell, A., Petersen, D., & Brand, R. (1990). A comparison of the accuracy of several hip center location prediction methods. Journal of Biomechanics, 23, 617–621.CrossRefGoogle Scholar
  33. 33.
    Boudriot, U., Hilgert, J., & Hinrichs, F. (2006). Determination of the rotational center of the hip. Archives of Orthopaedic and Trauma Surgery, 126, 417–420.CrossRefGoogle Scholar
  34. 34.
    Kirkwood, R., Culham, E., & Costigan, P. (1999). Radiographic and non-invasive determination of the hip joint center location: Effect on hip joint moments. Clinical Biomechanics, 14, 227–235.CrossRefGoogle Scholar
  35. 35.
    Seidel, G. K., Marchinda, D. M., Dijkers, M., & Soutas-Little, R. W. (1995). Hip joint center location from palpable bony landmarks: A cadaver study. Journal of Biomechanics, 28(8), 995–998.CrossRefGoogle Scholar
  36. 36.
    Cappozzo, A. (1984). Gait analysis methodology. Human Movemenent Science, 3, 27–54.CrossRefGoogle Scholar
  37. 37.
    Chang, L., & Pollard, N. (2007). Constrained least-squares optimization for robust estimation of center of rotation. Journal of Biomechanics, 40(6), 1392–1400.CrossRefGoogle Scholar
  38. 38.
    Piazza, S., Okita, N., & Cavanagh, P. (2001). Accuracy of the functional method of hip joint center location: Effects of limited motion and varied implementation. Journal of Biomechanics, 34(7), 967–973.CrossRefGoogle Scholar
  39. 39.
    Siston, R., & Delp, S. (2006). Evaluation of a new algorithm to determine the hip joint center. Journal of Biomechanics, 39, 125–130.CrossRefGoogle Scholar
  40. 40.
    Gilles, B. (2007). Anatomical and kinematical modelling of themusculoskeletal system from MRI. PhD Thesis, University of Geneva, Switzerland.Google Scholar
  41. 41.
    Kang, M. (2004). Hip joint center location by fitting conchoid shape to the acetabular rim region of MR images. Paper presented at the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, USA, 2004.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Institute for Media InnovationNanyang Technological University50 Nanyang DriveSingapore

Personalised recommendations