Advertisement

Modeling and Simulating Virtual Anatomical Humans

  • Forough MadehKhaksar
  • Zhiping Luo
  • Nicolas PronostEmail author
  • Arjan Egges
Chapter

Abstract

Research in human modeling and simulation has been one of the primary areas of research in computer graphics since the early 1970s. It involves creating human life on a computer, digital avatars that move, talk, and behave like humans. The complexity of simulating the human body and its behavior is directly proportional to the complexity of the human body itself, and is compounded by the vast number of movements it is capable of. Research in this area encompasses multi-disciplinary efforts which include: biomechanics; computer animation; posture and motion prediction; anatomical modeling and physiological simulation. In this chapter we present a structured view of over two decades of research on anatomical modeling and simulation of virtual humans. We pay special attention to the modeling of the skeletal structure and the muscles as well as the simulation of their interactions.

Keywords

Computer animation Biomechanics Anatomical modeling Virtual human simulation and actuation 

Notes

Acknowledgments

This work has been supported by the Dutch research project COMMIT—Virtual Worlds for Well-Being [74].

References

  1. 1.
    3D anatomical human. EU Research Project. http://3dah.miralab.ch/, 2010.
  2. 2.
    Multi scale biological modalities for physiological human articulation. EU Research Project. http://multiscalehuman.miralab.ch/, 2013.
  3. 3.
    Zordan, V. B., Celly, B., Chiu, B., & DiLorenzo, P. C. (2006). Breathe easy: Model and control of human respiration for computer animation. Graphical Models, 68(2), 113–132.CrossRefGoogle Scholar
  4. 4.
    DiLorenzo, P. C., Zordan, V. B., & Sanders, B. L. (2008). Laughing out loud: Control for modeling anatomically inspired laughter using audio. ACM Transactions on Graphics, 27(5), 125:1–125:8.CrossRefGoogle Scholar
  5. 5.
    Lee, S.-H., Sifakis, E., & Terzopoulos, D. (2009). Comprehensive biomechanical modeling and simulation of the upper body. ACM Transactions on Graphics, 28(4), 99:1–99:17.CrossRefGoogle Scholar
  6. 6.
    Winter, D. A. (2005). Biomechanics and motor control of human movement (3rd ed.). Hoboken: Wiley.Google Scholar
  7. 7.
    Nordin, M., & Frankel, V. H. (2012). Basic biomechanics of the musculoskeletal system (4th ed.). USA: Wolters Kluwer Health.Google Scholar
  8. 8.
    Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: Structure and properties. Cambridge Solid State Science Series. Cambridge: Cambridge University Press.Google Scholar
  9. 9.
    Spivak, J. M., DiCesare, P., Feldman, D., Koval, K., Rokito, A., & Zuckerman, J. D. (1999). Orthopaedics: A study guide. New York: McGraw-Hill.Google Scholar
  10. 10.
    Seth, A., Sherman, M., Eastman, P., & Delp, S. (2010). Minimal formulation of joint motion for biomechanisms. Nonlinear Dynamics, 62(1–2), 291–303.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Scheepers, F., Parent, R. E., Carlson, W. E., & May, S. F. (1997). Anatomy-based modeling of the human musculature. In Proceedings of the 24th annual conference on Computer Graphics and Interactive Techniques, 1997, pp. 163–172.Google Scholar
  12. 12.
    Yamaguchi, G. T., & Zajac, F. E. (1989). A planar model of the knee joint to characterize the knee extensor mechanism. Journal of Biomechanics, 22(1), 1–10.CrossRefGoogle Scholar
  13. 13.
    Wilhelms, J. (1997). Animals with anatomy. IEEE Computer Graphics and Applications, 17(3), 22–30.CrossRefGoogle Scholar
  14. 14.
    Maurel, W., & Thalmann, D. (2000). Human shoulder modeling including scapulo-thoracic constraint and joint sinus cones. Computers and Graphics, 24(2), 203–218.CrossRefGoogle Scholar
  15. 15.
    Gasser, H. S., & Hill, A. V. (1924). The dynamics of muscular contraction. Proceedings of the Royal Society of London. Series B, containing papers of a biological character, 96(678), 398–437.CrossRefGoogle Scholar
  16. 16.
    Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 126(843), 136–195.CrossRefGoogle Scholar
  17. 17.
    Zajac, F. E. (1988). Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 17(4), 359–411.Google Scholar
  18. 18.
    Lee, D., Glueck, M., Khan, A., Fiume, E., & Jackson, K. (2010). A survey of modeling and simulation of skeletal muscle. ACM Transactions on Graphics, 28(4).Google Scholar
  19. 19.
    Chen, D. T., & Zeltzer, D. (1992). Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. SIGGRAPH Computer Graphics, 26(2), 89–98.CrossRefGoogle Scholar
  20. 20.
    Blemker, S. S., & Delp, S. L. (2005). Three-dimensional representation of complex muscle architectures and geometries. Annals of Biomedical Engineering, 33(5), 661–673.CrossRefGoogle Scholar
  21. 21.
    Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., & Fedkiw, R. (2005). Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics, 11(3), 317–328.CrossRefGoogle Scholar
  22. 22.
    Lee, S.-H., Sifakis, E., & Terzopoulos, D. (2009). Comprehensive biomechanical modeling and simulation of the upper body. ACM Transactions on Graphics (TOG), 28(4), 99.CrossRefGoogle Scholar
  23. 23.
    Turner, R., & Thalmann, D. (1993). The elastic surface layer model for animated character construction. Communicating with virtual worlds. Tokyo: Springer Verlag.Google Scholar
  24. 24.
    Terzopoulos, D., & Waters, K. (1991). Techniques for realistic facial modeling and animation. Computer animation. Tokyo: Springer-Verlag.Google Scholar
  25. 25.
    Galoppo, N., Otaduy, M. A., Mecklenburg, P., Gross, M., & Lin, M. C. (2006). Fast simulation of deformable models in contact using dynamic deformation textures. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2006, pp. 73–82.Google Scholar
  26. 26.
    Galoppo, N., Otaduy, M. A., Tekin, S., Gross, M., & Lin, M. C. (2007). Soft articulated characters with fast contact handling. Computer Graphics Forum, 26, 243–253.CrossRefGoogle Scholar
  27. 27.
    Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., & Guo, B. (2008). Example-based dynamic skinning in real time. ACM Transactions on Graphics, 27(3), 29:1–29:8.CrossRefGoogle Scholar
  28. 28.
    Teran, J., Sifakis, E., Irving, G., & Fedkiw, R. (2005). Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2005, pp. 181–190.Google Scholar
  29. 29.
    Kim, J., & Pollard, N. S. (2011). Fast simulation of skeleton-driven deformable body characters. ACM Transactions on Graphics, 30(5):121:1–121:19.Google Scholar
  30. 30.
    Müller, M., Dorsey, J., McMillan, L., Jagnow, R., & Cutler, B. (2002). Stable real-time deformations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2002, pp. 49–54.Google Scholar
  31. 31.
    Müller, M., & Gross, M. (2004). Interactive virtual materials. In Proceedings of Graphics Interface, 2004, pp. 239–246.Google Scholar
  32. 32.
    Sederberg, T. W., & Parry, S. W. (1986). Free-form deformation of solid geometric models. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986, pp. 151–160.Google Scholar
  33. 33.
    Nesme, M., Kry, P. G., Jeřábková, L., & Faure, F. (2009). Preserving topology and elasticity for embedded deformable models. ACM Transactions on Graphics, 28(3).Google Scholar
  34. 34.
    Pixar. RenderMan, http://renderman.pixar.com/
  35. 35.
  36. 36.
    Lee, S. -H., & Terzopoulos, D. (2008). Spline joints for multibody dynamics. ACM Transactions on Graphics, 27(3):22:1–22:8, 2008.Google Scholar
  37. 37.
    Pronost, N. Sandholm, A. & Thalmann, D. (2010). Correlative joint definition for motion analysis and animation. Computer Animation and Virtual Worlds, CASA 2010 Special Issue, 21, 183–192.Google Scholar
  38. 38.
    The ultimate human model data set. cgCharacter. http://www.cgcharacter.com/ultimatehuman.html
  39. 39.
    Pratscher, M., Coleman, P., Laszlo, J., & Singh, K. (2005). Outside-in anatomy based character rigging. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2005, pp. 329–338.Google Scholar
  40. 40.
    Pronost, N., Sandholm, A., & Thalmann, D. (2011). A visualization framework for the analysis of neuromuscular simulations. The Visual Computer, 27(2), 109–119.CrossRefGoogle Scholar
  41. 41.
    Delp, S. L., & Loan, J. P. (1995). A graphics-based software system to develop and analyze models of musculoskeletal structures. Computers in Biology and Medicine, 25(1), 21–34.CrossRefGoogle Scholar
  42. 42.
    Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E., & de Zee, M. (2006). Analysis of musculoskeletal systems in the anybody modeling system. Simulation Modelling Practice and Theory, 14(8), 1100–1111.CrossRefGoogle Scholar
  43. 43.
    Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950.CrossRefGoogle Scholar
  44. 44.
    Fernandez, J. W., & Pandy, M. G. (2006). Integrating modelling and experiments to assess dynamic musculoskeletal function in humans. Experimental Physiology, 91(2), 371–382.CrossRefGoogle Scholar
  45. 45.
    Scheys, L., Desloovere, K., Spaepen, A., Suetens, P., & Jonkers, I. (2011). Calculating gait kinematics using MR-based kinematic models. Gait and Posture, 33(2), 158–164.CrossRefGoogle Scholar
  46. 46.
    Assassi, L., Charbonnier, C., Schmid, J., Volino, P., & Magnenat-Thalmann, N. (2009). From MRI to anatomical simulation of the hip joint. Computer Animation and Virtual Worlds, 20(1), 53–66.CrossRefGoogle Scholar
  47. 47.
    Gilles, B., Moccozet, L., & Magnenat-Thalmann, N. (2006). Anatomical modelling of the musculoskeletal system from MRI. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2006, pp. 289–296.Google Scholar
  48. 48.
    Peeters, P., & Pronost, N. (2013). A practical framework for generating volumetric meshes of subject-specific soft tissue. The visual computer, pp. 1–11.Google Scholar
  49. 49.
    Taubin, G. (1995). Curve and surface smoothing without shrinkage. In 5th International Conference on Computer Vision, 1995, pp. 852–857.Google Scholar
  50. 50.
    Vasavada, A. N., Li, S., & Delp, S. L. (1998). Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine, 23(4), 412–422.Google Scholar
  51. 51.
    Lee, S.-H., & Terzopoulos, D. (2006). Heads up!: Biomechanical modeling and neuromuscular control of the neck. ACM Transactions on Graphics, 25(3), 1188–1198.CrossRefGoogle Scholar
  52. 52.
    Si, H. (2013). TetGen: A quality tetrahedral mesh generator and a 3D delaunay triangulator. http://tetgen.berlios.de
  53. 53.
    Oudot, S., Rineau, L., & Yvinec, M. (2005). Meshing volumes bounded by smooth surfaces. In Proceedings of 14th International Meshing Roundtable, 2005, pp. 203–219.Google Scholar
  54. 54.
    Zaharescu, A., Boyer, E., & Horaud, R. P. (2007). Transformesh: A topology-adaptive mesh-based approach to surface evolution, vol. II. In Proceedings of the 8th Asian Conference on Computer Vision. LNCS, 4844, 166–175.Google Scholar
  55. 55.
    Tan, J., Turk, G., & Liu. C. K. (2012). Soft body locomotion. ACM Transactions on Graphics, 31(4), 26:1–26:11.Google Scholar
  56. 56.
    Clayton, H. M., & Schamhardt, H. C. (2001). Measurement techniques for gait analysis. Equine locomotion, pp. 55–76. London: W.B. Saunders.Google Scholar
  57. 57.
    Nigg, B. M., Herzog, W., & Wiley, J. (1999). Biomechanics of the musculo-skeletal system, vol. 2. New York: Wiley.Google Scholar
  58. 58.
    Stokes, I. A. F., Henry, S. M., & Single, R. M. (2003). Surface EMG electrodes do not accurately record from lumbar multifidus muscles. Clinical Biomechanics, 18(1), 9–13.CrossRefGoogle Scholar
  59. 59.
    Allard, P., Stokes, I. A. F., & Blanchi, J. -P. (1995). Three-dimensional analysis of human movement. IL: Human Kinetics Champaign.Google Scholar
  60. 60.
    Mayagoitia, R. E., Nene, A. V., & Veltink, P. H. (2002). Accelerometer and rate gyroscope measurement of kinematics: An inexpensive alternative to optical motion analysis systems. Journal of Biomechanics, 35(4), 537–542.CrossRefGoogle Scholar
  61. 61.
    Geijtenbeek, T., & Pronost, N. (2012). Interactive character animation using simulated physics: A state-of-the-art review. Computer Graphics Forum, 31(8), 2492–2515.CrossRefGoogle Scholar
  62. 62.
    Weinstein, R., Guendelman, E., & Fedkiw, R. (2008). Impulse-based control of joints and muscles. IEEE Transactions on Visualization and Computer Graphics, 14(1), 37–46.CrossRefGoogle Scholar
  63. 63.
    Grzeszczuk, R., & Terzopoulos, D. (1995). Automated learning of muscle-actuated locomotion through control abstraction. In ACM SIGGRAPH Papers Conference Proceedings, Los Angeles, CA, USA, 1995, pp. 63–70.Google Scholar
  64. 64.
    Hase, K., Miyashita, K., Ok, S., & Arakawa, Y. (2003). Human gait simulation with a neuromusculoskeletal model and evolutionary computation. The Journal of Visualization and Computer Animation, 14(2), 73–92.CrossRefGoogle Scholar
  65. 65.
    Murai, A., & Yamane, K. (2011). A neuromuscular locomotion controller that realizes human-like responses to unexpected disturbances. International Conference on Robotics and Automation (ICRA) 1, 2–3, 1997–2002.Google Scholar
  66. 66.
    Wang, J. M., Hamner, S. R., Delp, S., & Koltun, V. (2012). Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Transactions on Graphics, 31(4), 25:1–25:11.Google Scholar
  67. 67.
    Cani-Gascuel, M.-P., & Desbrun, M. (1997). Animation of deformable models using implicit surfaces. IEEE Transactions on Visualization and Computer Graphics, 3(1), 39–50.CrossRefGoogle Scholar
  68. 68.
    Chadwick, J. E., Haumann, D. R., & Parent, R. E. (1989). Layered construction for deformable animated characters. SIGGRAPH Computer Graphics, 23(3), 243–252.CrossRefGoogle Scholar
  69. 69.
    Moccozet, L., & Magnenat-Thalmann, N. (1997). Dirichlet free-form deformations and their application to hand simulation. In Computer Animation’97, 1997, pp. 93–102.Google Scholar
  70. 70.
    Nedel, L. P., & Thalmann, D. (1998). Modeling and deformation of the human body using an anatomically-based approach. In Proceedings of Computer Animation ’98, 1998, pp. 34–40.Google Scholar
  71. 71.
    ArtiSynth. A 3D biomechanical modeling toolkit for physical simulation of anatomical structures. www.artisynth.org
  72. 72.
    Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite elements for biomechanics. Journal of Biomechanical Engineering, 134(1), 011005.Google Scholar
  73. 73.
    Allard, J., Cotin, S., Faure, F., Bensoussan, P. J., Poyer, F., Duriez, C., Delingette, H., & Grisoni, L. (2007). SOFA: An open source framework for medical simulation. In Medicine Meets Virtual Reality (MMVR) 15.Google Scholar
  74. 74.
    COMMIT. (2013). Virtual worlds for well-being, Dutch Research Project. http://www.commit-nl.nl/

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Forough MadehKhaksar
    • 1
  • Zhiping Luo
    • 1
  • Nicolas Pronost
    • 1
    Email author
  • Arjan Egges
    • 1
  1. 1.Virtual Human Technology LabUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations