Skip to main content

Visualization and User Interaction Methods for Multiscale Biomedical Data

  • Chapter
  • First Online:
3D Multiscale Physiological Human

Abstract

The need for handling huge amounts of data from several sources is becoming increasingly important for biomedical scientists. In the past, there were mainly different modalities in imaging techniques that had to be combined. Those modalities usually measured different physical effects from the same object and shared dimensions and resolution. Nowadays, an increasing number of complex use cases exist in biomedical science and clinical diagnostics that require data from various domains, each one related to a different spatiotemporal scale. Multiscale spatial visualization and interaction can help physicians and scientists to explore and understand this data. In the recent years, the number of published articles on efficient scientist-centric visualization and interaction methods has drastically increased. This chapter describes current techniques on multiscale visualization and user interaction and proposes strategies to accommodate current needs in biomedical data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Walter, T., et al. (2010). Visualization of image data from cells to organisms. Nature Methods, 7, S26–S41.

    Article  Google Scholar 

  2. Levenson, R. M., & Mansfield, J. R. (2006). Multispectral imaging in biology and medicine: Slices of life. Cytometry Part A, 69A(8), 748–758.

    Article  Google Scholar 

  3. Chiang, Y. J., et al. (2003). Out-of-core algorithms for scientific visualization and computer graphics. IEEE Visualization, 22(1), 35–48.

    Google Scholar 

  4. Friese, K.-I., et al. (2013). Analysis of tomographic mineralogical data using YaDiV–Overview and practical case study. Computers and Geosciences, 56, 92–103.

    Article  Google Scholar 

  5. Friese, K. I., et al. (2011). YaDiV–an open platform for 3D visualization and 3D segmentation of medical data. The Visual Computer, 27(2), 129–139.

    Article  Google Scholar 

  6. Auer, M., et al. (2007). Development of multiscale biological image data analysis: Review of 2006 international workshop on multiscale biological imaging, data mining and informatics, Santa Barbara, USA (BII06). BMC Cell Biology, 8(1), S1.

    Article  Google Scholar 

  7. Jmol: an open-source Java viewer for chemical structures in 3D, http://www.jmol.org/

  8. OsiriX Imaging Software, DICOM sample image sets, http://www.osirix-viewer.com/datasets/

  9. Fishman, E. K., & Kuszyk, B. (2001). 3D imaging: Musculoskeletal applications. Critical Reviews in Diagnostic Imaging, 42(1), 59–100.

    Google Scholar 

  10. Oden, J. T. et al. (2006). Simulation-based engineering science: Revolutionizing engineering science through simulation, http://www.nsf.gov/pubs/reports/sbes_final_report.pdf

  11. Han, L., et al. (2011). Nanomechanics of the cartilage extracellular matrix. Annual Review of Materials Research, 41, 133.

    Article  Google Scholar 

  12. Testi, D. et al. (2012). New interactive visualisation of multiscale biomedical data. ACM SIGGRAPH 2012 Posters, (pp. 76:1–76:1), ACM, New York.

    Google Scholar 

  13. Viceconti, M., et al. (2007). Multimod Data Manager: A tool for data fusion. Computer Methods and Programs in Biomedicine, 87(2), 148–159.

    Article  MathSciNet  Google Scholar 

  14. MultiScaleHuman Project (2012). MultiScaleHuman Project, http://multiscalehuman.miralab.ch/

  15. Kleemann, R. U., et al. (2005). Altered cartilage mechanics and histology in knee osteoarthritis: Relation to clinical assessment (ICRS Grade). Osteoarthritis Cartilage, 13(11), 958–963.

    Article  Google Scholar 

  16. Loeuille, D., et al. (2005). Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: Correlating magnetic resonance imaging findings with disease severity. Arthritis and Rheumatism, 52(11), 3492–3501.

    Article  Google Scholar 

  17. Liu, W. K., et al. (2006). Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering, 195(13–16), 1722–1749.

    Article  MATH  MathSciNet  Google Scholar 

  18. Mcfarlane, N. J. B. et al. (2012). A survey and classification of visualisation in multiscale biomedical applications. Information Visualisation (IV), 2012 16th International Conference on. pp. 561–566.

    Google Scholar 

  19. Chen, J., et al. (2005). Grand challenges for multimodal bio-medical systems. IEEE Circuits and Systems Magazine, 5(2), 46–52.

    Article  Google Scholar 

  20. Lorensen, B. (2004). On the death of visualization. Proceedings of the NIH/NSF Fall 2004 Workshop on Visualization Research Challenges.

    Google Scholar 

  21. O’Donoghue, S. I., et al. (2010). Visualizing biological data–now and in the future. Nature Methods, 7, S2–S4.

    Article  Google Scholar 

  22. Nielson, G. M., et al. (Eds.). (1997). Scientific visualization, overviews, methodologies, and techniques. Washington: IEEE Computer Society.

    Google Scholar 

  23. Huang, N. E., & Shen, S. S. P. (2005). Hilbert-Huang Transform and Its Applications. World Scientific, 5, 1–15.

    Article  Google Scholar 

  24. Helgason, S. (1999). The Radon transform, Springer.

    Google Scholar 

  25. Leach, A. R. (2001). Molecular modelling: Principles and applications. Harlow: Pearson Education.

    Google Scholar 

  26. Card, S. K., et al. (1999). Readings in information visualization: Using vision to think. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  27. Johnson, C. (2004). Top scientific visualization research problems. IEEE Computer Graphics and Applications, 24(4), 13–17.

    Article  Google Scholar 

  28. Van Wijk, J. J. (2005). The value of visualization. Proceedings of the 16th Conference IEEE Visualization (VIS 05), pp. 79–86.

    Google Scholar 

  29. Evanko, D. (2010). Supplement on visualizing biological data. Nature Methods, 7, S1–S1.

    Article  Google Scholar 

  30. Rhyne, T.-M. (2003). Does the difference between information and scientific visualization really matter? IEEE Computer Graphics and Applications, 23(3), 6–8.

    Article  Google Scholar 

  31. Rhyne, T. M. et al. (2003). Information and scientific visualization: Separate but equal or happy together at last. Proceedings of the 14th IEEE Visualization, p. 115.

    Google Scholar 

  32. Healey, C. G., & Enns, J. T. (1998). On the use of perceptual cues & Data mining for effective visualization of scientific datasets. In Proceedings Graphics, Interface, pp. 177–184.

    Google Scholar 

  33. Kosara, R., et al. (2003). Thoughts on user studies: Why, how, and when. IEEE Computer Graphics and Applications, 23(4), 20–25.

    Article  Google Scholar 

  34. Tory, M., & Moller, T. (2004). Human factors in visualization research. IEEE Transactions on Visualization and Computer Graphics, 10(1), 72–84.

    Article  Google Scholar 

  35. Damle, A. (2002). Explain me visually: Exploring information design through multimedia. Information visualisation, 2002. Proceedings of the Sixth International Conference on, pp. 265–267.

    Google Scholar 

  36. Springmeyer, R. R., et al. (1992). A characterization of the scientific data analysis process. Proceedings of the 3rd Conference on Visualization’92, pp. 235–242.

    Google Scholar 

  37. Ibrahim, N., & Noor, N. F. M. (2004). Navigation technique in 3D information visualisation. Proceedings IEEE Region 10 Conference TENCON 2004, pp. 379–382.

    Google Scholar 

  38. Bajaj, C., et al. (2003). Volumetric feature extraction and visualization of tomographic molecular imaging. Journal of Structural Biology, 144(1–2), 132–143.

    Article  Google Scholar 

  39. Yu, Z., & Bajaj, C. (2004). A fast and adaptive method for image contrast enhancement. Proceedings of 2004 IEEE International Conference on Image Processing (ICIP’04). Vol., 2, 1001–1004.

    Google Scholar 

  40. Bajaj, C., & Goswami, S. (2009). Modeling cardiovascular anatomy from patient-specific imaging. In J. M. R. S. Tavares & R. M. N. Jorge (Eds.), Advances in computational vision and medical image processing (pp. 1–28). Netherlands: Springer.

    Chapter  Google Scholar 

  41. Johnson, C. R., & Sanderson, A. R. (2003). A next step: Visualizing errors and uncertainty. IEEE Computer Graphics and Applications, 23(5), 6–10.

    Article  Google Scholar 

  42. Westerhoff, H. (2012). White paper: VPH, Molecular Systems Biology (MSB), and their ITFoM, http://www.itfom.eu/images/article_PDFs/white_paper_vph_msb_itfom_2012.pdf

  43. O’Donoghue, S. I., et al. (2004). The SRS 3D module: Integrating structures, sequences and features. Bioinformatics, 20(15), 2476–2478.

    Article  Google Scholar 

  44. Rhead, B., et al. (2010). The UCSC Genome Browser database: Update 2010. Nucleic Acids Research, 38(1), D613–D619.

    Article  Google Scholar 

  45. Gehlenborg, N., et al. (2010). Visualization of omics data for systems biology. Nature Methods, 7, S56–S68.

    Article  Google Scholar 

  46. McFarlane, N., et al. (2012). Report on best practice, Multiscale Spatio-temporal Visualisation Project.

    Google Scholar 

  47. Hansen, C. D., & Johnson, C. R. (2005). Visualization handbook. San Diego: Academic Press.

    Google Scholar 

  48. Luebke, D., et al. (2002). Level of detail for 3D graphics. San Francisco: Morgan Kaufmann.

    Google Scholar 

  49. Staadt, O. G., et al. (2007). Interactive processing and visualization of image data for biomedical and life science applications. BMC Cell Biology, 8(1), S10.

    Article  Google Scholar 

  50. Biodigital Human (2012). Biodigital Human, https://www.biodigitalhuman.com/

  51. Zygote Body (2012). Zygote Body http://www.zygotebody.com/

  52. Hunter, P., et al. (2010). A vision and strategy for the virtual physiological human in 2010 and beyond. Philosophical Transactions of The Royal Society: A Mathematical Physical and Engineering Sciences, 368(1920), 2595–2614.

    Google Scholar 

  53. Testi, D., et al. (2011). Interactive visualization of multiscale biomedical data: An integrated approach. Proceedings of the 1st IEEE Symposium on Biological Data Visualization (BioVis), pp. 3–4.

    Google Scholar 

  54. Visualization Toolkit (2012). Visualization Toolkit, http://www.vtk.org/

  55. Caban, J. J., et al. (2007). Rapid development of medical imaging tools with open-source libraries. Journal of Digital Imaging, 20(Suppl 1), 83–93.

    Article  Google Scholar 

  56. Leardini, A., et al. (2005). Advanced multimodal visualisation of clinical gait and fluoroscopy analyses in the assessment of total knee replacement. Computer Methods and Programs in Biomedicine, 79(3), 227–240.

    Article  Google Scholar 

  57. Karray, F., et al. (2008). Human-Computer Interaction: Overview on state of the art. International Journal on Smart Sensing and Intelligent Systems, 1(1), 137–159.

    Google Scholar 

  58. McNamara, N., & Kirakowski, J. (2006). Functionality, usability, and user experience: Three areas of concern. Interactions., 13(6), 26–28.

    Article  Google Scholar 

  59. St Amant, R., & Riedl, M. O. (2001). A perception/action substrate for cognitive modeling in HCI. International Journal of Human-Computer Studies, 55(1), 15–39.

    Article  MATH  Google Scholar 

  60. Cutrell, E., & Tan, D. (2008). BCI for passive input in HCI. Proceedings of CHI.

    Google Scholar 

  61. Picard, R. W. (1999). Affective computing for HCI. Proceedings of HCI International (8th International Conference on Human-Computer Interaction): Ergonomics and User Interfaces, pp. 829–833.

    Google Scholar 

  62. Myers, B. A. (1998). A brief history of human-computer interaction technology. Interactions, 5(2), 44–54.

    Google Scholar 

  63. Sutherland, I. E. (1968). A head-mounted three dimensional display. Proceedings of Fall Joint Computer Conf., pp. 757–764, Washington: Thompson Books.

    Google Scholar 

  64. Friedewald, M., & Raabe, O. (2011). Ubiquitous computing: An overview of technology impacts. Telematics Informatics, 28(2), 55–65.

    Article  Google Scholar 

  65. Maybury, M. (1998). Intelligent user interfaces: an introduction. Proceedings of the 4th International Conference on Intelligent User interfaces, pp. 3–4.

    Google Scholar 

  66. How, Y., & Kan. M. Y. (2005). Optimizing predictive text entry for short message service on mobile phones. Proceedings of HCII.

    Google Scholar 

  67. Jaimes, A., & Sebe, N. (2007). Multimodal human-computer interaction: A survey. Computer Vision and Image Understanding, 108(1–2), 116–134.

    Article  Google Scholar 

  68. Hjelmås, E., & Low, B. K. (2001). Face detection: A survey. Computer Vision and Image Understanding, 83(3), 236–274.

    Article  MATH  Google Scholar 

  69. Herda, L., et al. (2000). Skeleton-based motion capture for robust reconstruction of human motion. In Proceedings of Computer Animation, 2000, 77–83.

    Google Scholar 

  70. Lange, B., et al. (2011). Markerless full body tracking: Depth-sensing technology within virtual environments. Simulation and Education Conference (I/ITSEC) : The Interservice/Industry Training.

    Google Scholar 

  71. Mitra, S., & Acharya, T. (2007). Gesture recognition: A survey. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 37(3), 311–324.

    Google Scholar 

  72. Jacob, R. J. K., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind, 2(3), 4.

    Google Scholar 

  73. Bennett, I. M., et al. (2003). Distributed realtime speech recognition system.

    Google Scholar 

  74. Zwyssig, E., et al. (2012). Determining the number of speakers in a meeting using microphone array features. 2012 IEEE International Conference on Acoustics Speech and, Signal Processing (ICASSP), (pp. 4765–4768).

    Google Scholar 

  75. Vogt, T., et al. (2008). EmoVoice–a framework for online recognition of emotions from voice. In E. André (Ed.), Perception in multimodal dialogue systems (pp. 188–199). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  76. Hume, S. (2001). Pen-based computing. Applied Clinical Trials, 10(7), 32.

    Google Scholar 

  77. Ueberle, M., et al. (2009). Haptic feedback systems for virtual reality and telepresence applications. Feedback, 56, 97.

    Google Scholar 

  78. Okamura, A. M. (2009). Haptic feedback in robot-assisted minimally invasive surgery. Current Opinion in Urology, 19(1), 102.

    Article  Google Scholar 

  79. McCrae, J., et al. (2009). Multiscale 3D navigation. Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, p. 714.

    Google Scholar 

  80. Darken, R. P., & Peterson, B. (2002). Spatial orientation, wayfinding, and representation (pp. 493–518). Handbook of Virtual Environments, Mahwah NJ : Lawrence Erlbaum Associates.

    Google Scholar 

  81. McFarlane, N. J. B., et al. (2008). 3D Multiscale visualisation for medical datasets. BioMedical Visualization, 2008. MEDIVIS’08. Fifth International Conference. pp. 47–52.

    Google Scholar 

  82. Hu, Z., et al. (2009). VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Research, 37(suppl 2), W115–W121.

    Article  Google Scholar 

  83. Gene Ontology Project (2012). Gene Ontology Project, http://www.geneontology.org

  84. Catalano, C. E., et al. (2011). Semantics and 3D media: Current issues and perspectives. Computers and Graphics, 35(4), 869–877.

    Article  MathSciNet  Google Scholar 

  85. Keim, D., et al. (2008). Visual analytics: Definition, process, and challenges. In A. Kerren (Ed.), Information Visualization (pp. 154–175). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  86. Bowman, D. A., et al. (2008). 3D user interfaces: New directions and perspectives. IEEE Computer Graphics and Applications, 28(6), 20–36.

    Article  Google Scholar 

  87. Hanson, A. J., & Wernert, E. A. (1997). Constrained 3D navigation with 2D controllers. Proceedings of Visualization ’97, pp. 175–182.

    Google Scholar 

  88. Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385.

    Google Scholar 

  89. Hodson, H. (2012). Wearable gadgets enhance symbiosis of man and machine. New Scientist, 216(2886), 22.

    Article  Google Scholar 

  90. Vlasov, R., et al. (2013). Haptic rendering of volume data with collision detection guarantee using path finding. In Transactions on Computational Science XVIII (pp. 212–231). Berlin Heidelberg: Springer.

    Google Scholar 

  91. Vlasov, R., et al. (2012). Haptic rendering of volume data with collision determination guarantee using ray casting and implicit surface representation. 2012 International Conference on Cyberworlds (CW), pp. 91–98.

    Google Scholar 

  92. Vlasov, R., et al. (2012). Ray casting for collision detection in haptic rendering of volume data. Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. (pp. 215–215), New York: ACM.

    Google Scholar 

  93. Abásolo, M. J., & Della, J. M. (2007). Magallanes: 3d navigation for everybody. Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast, Asia. pp. 135–142.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the framework of the EU Marie Curie Project MultiScaleHuman (FP7-PEOPLE-2011-ITN, Grant agreement no.: 289897).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Manuel Millán Vaquero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Millán Vaquero, R.M., Rzepecki, J., Friese, KI., Wolter, FE. (2014). Visualization and User Interaction Methods for Multiscale Biomedical Data. In: Magnenat-Thalmann, N., Ratib, O., Choi, H. (eds) 3D Multiscale Physiological Human. Springer, London. https://doi.org/10.1007/978-1-4471-6275-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6275-9_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6274-2

  • Online ISBN: 978-1-4471-6275-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics