Accessing and Representing Knowledge in the Medical Field: Visual and Lexical Modalities

  • Imon Banerjee
  • Chiara Eva CatalanoEmail author
  • Francesco Robbiano
  • Michela Spagnuolo


In the era of digitalization a large amount of medical data is produced, and many activities spanning from diagnosis to simulation and from assisted surgery to patient-specific treatment and follow-up are carried out with the support of software tools. Computer-aided medicine can undoubtedly take advantage of a structured organization of the digital data involved, through the aid of knowledge and visualization technologies. In this chapter, we will survey recent approaches to the access and presentation of medical data in order to exemplify how knowledge-driven data organization may support medical activities. These approaches will be analyzed paying special attention to two different trends: we will show their potential in providing a visual effective reference and their capability of exploiting shared and structured vocabularies. Perspectives on the integration of these two trends will also be presented.


Computer aided medicine Knowledge formalization Visualization Medical data Patient-specific models 



This work is supported by the FP7 Marie Curie Initial Training Network “MultiScaleHuman”: Multi-scale Biological Modalities for Physiological Human Articulation (2011–2015), contract MRTN-CT-2011-289897. We kindly acknowledge the partial support of the FP7 “VISIONAIR”: Vision Advanced Infrastructure for Research (2011–2015), grant no. 262044, POLITECMED—Research and Innovation Pole of the Regional Centre for Research and Innovation of the Regione Liguria, and the Italian CNR Flagship project INTEROMICS, InterOmics PB05, research unit WP15. Finally, we kindly thank Osman Ratib for his comments on OsiriX.


  1. 1.
    Garber, A. M., Owens, D. K., Singer, S. J., & Enthoven, A. C. (2006). In E. H. Shortliffe & J. J. Cimino (Eds.), Biomedical informatics: Computer applications in health care and biomedicine. Newyork: Springer.Google Scholar
  2. 2.
    Andrews, B. (2006). Introduction to “perceptual principles in medical illustration”. ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06. NY, USA: ACM. Retrieved July 30, 2006, from DOI=10.1145/1185657.1185691
  3. 3.
    Rosset, A., Spadola, L., & Ratib, O. (2004). OsiriX: An open-source software for navigating in multidimensional. Journal of Digital Imaging, 17(205–216).Google Scholar
  4. 4.
    Friese, K. I., Blanke, P., & Wolter, F. E. (2011). YaDiV–An open platform for 3D visualization and 3D. In The visual computer 27. Newyork: Springer.Google Scholar
  5. 5.
  6. 6.
    White paper on multiscale visualisation (2012). s. l.:
  7. 7.
    Google. Google body browser.
  8. 8.
    Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi T., & Okubo, K. (2009). BodyParts3D: 3D structure database for anatomical concepts. Nucleic Acids Research, 37, D782–D785.Google Scholar
  9. 9.
    BodyParts3D. The Creative Commons Attribution-Share Alike 2.1 Japan.
  10. 10.
    Rosse, C., & Mejino, J. L. V. (2003). A reference ontology for biomedical informatics: The foundational model of anatomy. Journal of Biomedical Informatics, 36, 478–500.CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    Chen, L., Martone, M. E., Gupta, A., Fong, L., & Wong-barnum, M. (2006). OntoQuest: Exploring ontological data made easy. Very Large Data Bases—VLDB Conference, (pp. 1183–1186).Google Scholar
  15. 15.
    Spackman, K. (2000). Snomed rt and snomed ct. promise of an international clinical terminology. Computer Molecular Dynamics, 17(6), 29.Google Scholar
  16. 16.
    Cook, D. L., Mejino, J. L. V., & Rosse, C. (2004). Evolution of a foundational model of hysiology: Symbolic representation for functional bioinformatics. Medinfo, 11, 336–340.Google Scholar
  17. 17.
  18. 18.
    Langlotz, C. P. (2006). RadLex: A new method for indexing online educational materials. Radiographics, 26, 7–1595. (Pubmed citation).Google Scholar
  19. 19.
    Zanstra. P. E., van der Haring, E. J., Flier, F., Rogers, J.E., & Solomon, W. D. (1997). Using the grail language for classification management. Fifteenth International Congress of the European Federation for Medical Informatics (Vol. 97, pp. 441–445). Thessaloniki, Greece: MIE.Google Scholar
  20. 20.
    Rector, A. L., Bechhofer, S., Goble, C. A., Horrocks, I., Nowlan, W.A., & Solomon W. D. (1997). The grail concept modelling language for medical terminology. Artificial Intelligent Medicine, 9(2), 139–171.Google Scholar
  21. 21.
    U.S. National Library of Medicine. (2011, March) Unified medical language system \(^{\textregistered }\) (UMLS) \(^{\textregistered }\). Retrieved March, 2011 from
  22. 22.
    International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM).
  23. 23.
  24. 24.
  25. 25.
    Bodenreider, O. (2004). The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Research, 32, 267–270.Google Scholar
  26. 26.
    Palombi, O., Bousquet, G., Jospin, D., Hassan, S., Revéret, L., & Faure, F. (2009). My Corporis Fabrica: A unified ontological, geometrical and mechanical view of human anatomy, (Vol. 5903, pp. 207–219). Lecture notes in computer science. In 2nd workshop on 3D Physiological Human, 3DPH2009, Zermatt: Springer.Google Scholar
  27. 27.
    Heath, T., & Bizer, C. (2011). Linked data: Evolving the web into a global data space. In Synthesis lectures on the semantic web: Theory and technology (Vol. 1, issue 1, pp.1–136). Florida: Morgan and ClaypoolGoogle Scholar
  28. 28.
    The Digital Patient.
  29. 29.
    Catalano, C. E., Mortara, M., Spagnuolo, M., & Falcidieno, B. (2011, August). Semantics and 3D media: Current issues and perspectives. Computers and Graphics, 35(4), 869–877.Google Scholar
  30. 30.
    Catalano, C. E., Robbiano, F., Parascandolo, P., Cesario, L., Vosilla, L., Barbieri, F., Spagnuolo, M., Viano, G., & Cimmino, M. A. (2013). Exploiting 3D part-based analysis, description and indexing to support medical applications. In Proceedings of MCBR-CDS 2012: Medical Content-based Retrieval for Clinical Decision Support, MICCAI workshop, LNCS 7723, (pp. 21–32), Newyork: Springer.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Imon Banerjee
    • 1
  • Chiara Eva Catalano
    • 1
    Email author
  • Francesco Robbiano
    • 1
  • Michela Spagnuolo
    • 1
  1. 1.CNR IMATI-GenovaGenovaItaly

Personalised recommendations