A Biomechanical Approach for Dynamic Hip Joint Analysis

  • Lazhari AssassiEmail author
  • Nadia Magnenat-Thalmann


Hip osteoarthritis (OA) is one of the most common forms of musculoskeletal disorders. Although different factors have been identified as potential causes of the labral tear and cartilage degeneration, the exact pathogenesis for idiopathic OA is still not completely delineated. Given the crucial role of the mechanical behavior in the degenerative process, analyzing the contact mechanics in the articular layers during activities could contribute to the understanding of the pathology. This paper presents subject-specific and non-invasive methods which jointly encompass anatomy, kinematics and dynamics. This unique combination offers new ways to individualize the diagnostic by using a physically-based simulation of articular layers during motion. The simulation results showed that strong deformations and peak stresses were observed in extreme hip postures. Medical experts correlated these simulation findings with the locations of detected abnormalities. These observations strongly suggest that extreme and repetitive stresses within the joint could lead to early hip OA.


Hip joint osteoarthritis Biomechanical modeling Soft tissue simulation Contact stress Extreme movements 



We are grateful to the University Hospital of Geneva and the ballet dancers of the great theater of Geneva for their collaboration.


  1. 1.
    Arthritis foundation,
  2. 2.
    Bevan, S., McGee, R., & Quadrello, T. (2009). Key findings of the fit for work europe report on musculoskeletal disorders and work. Occupational Health at Work 2009 (Vol. 6, pp. 30–30). The At Work Partnership.Google Scholar
  3. 3.
    Bergmann, S. G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., et al. (2001). Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34, 859–871.CrossRefGoogle Scholar
  4. 4.
    Standring, S. (2005). Gray’s anatomy: The anatomical basis of clinical practice (39th ed.). Edinburgh: Elsevier.Google Scholar
  5. 5.
    Duthon, V., Menetrey, J., Kolo-Christophe, F., Charbonnier, C., Duc, S., Pfirrmann, C. et al. (2009). Professional dancers hip: Correlation of clinical and mri findings. In Swiss Medical Weekly (Vol. 139, pp. 23–24). Switzerland: EMH.Google Scholar
  6. 6.
    McCarthy, J. C., Noble, P. C., Schuck, M. R., Wright, J., Lee, J., & Waterman, M. S. (2009). The Otto E Aufranc Award the role of labral lesions to development of early degenerative hip disease. Clinical Orthopaedics, 393, 25–37.CrossRefGoogle Scholar
  7. 7.
    Tannast, M., Goricki, D., Beck, M., Murphy, S., & Siebenrock, K. (2008). Hip damage occurs at the zone of femoroacetabular impingement. Journal of Clinical Orthopaedics Related Research, 466, 273–280.CrossRefGoogle Scholar
  8. 8.
    Russell, M., Shivanna, K., Grosland, N., & Pedersen, D. (2006). Cartilage contact pressure elevations in dysplastic hips: A chronic overload model. Journal of Orthopaedic Surgery and Research, 1, 169–177.CrossRefGoogle Scholar
  9. 9.
    Kelly, B. T., Weiland, D. E., Schenker, M. L., & Philippon, M. J. (2005). Arthroscopic labral repair in the hip: surgical technique and review of the literature. Arthroscopy, 21, 496–504.Google Scholar
  10. 10.
    Macirowski, T., Tepic, S., & Mann, R. W. (1994). Cartilage stresses in the human hip joint. Journal of Biomechanical Engineering, 116, 10–18.CrossRefGoogle Scholar
  11. 11.
    Pool, A. R. (1995). Imbalances of anabolism and catabolism of cartilage matrix components in osteoarthritis. In V. M. Goldberg & K. E. Kuettner (Eds.), Osteoarthritic Disorder (pp. 247–260). Rosemont: American Association of Orthopaedic Surgeons.Google Scholar
  12. 12.
    Narvani, A. A., Tsiridis, E., Tai, C. C., & Thomas, P. (2003). Acetabular labrum and its tears. British Journal of Sports Medicine, 37, 207–211.CrossRefGoogle Scholar
  13. 13.
    Narvani A. A., Tsiridis, E., Kendall. S., Chaudhuri, R., & Thomas, P. (2003). A preliminary report on prevalence of acetabular labrum tears in sports patients with groin pain. Knee Surgery, Arthroscopy and Sports Traumatology, 11, 403–408.Google Scholar
  14. 14.
    Bharam, S. (2006). Labral tears, extra-articular injuries, and hip arthroscopy in the athlete. Clinic Sports Medicine, 25, 279–292.CrossRefGoogle Scholar
  15. 15.
    Binningsley, D. (2003). Tear of the acetabular labrum in an elite athlete. British Journal of Sports Medicine, 37, 84–88.CrossRefGoogle Scholar
  16. 16.
    Anderson, A. E., Ellis, B. J., Maas, S. A., Peters, C. L., & Weiss, J. A. (2008). Validation of finite element predictions of cartilage contact pressure in the human hip joint. Journal of Biomechanical Engineering, 130, 1–10.CrossRefGoogle Scholar
  17. 17.
    Chegini, S., Beck, M., & Ferguson, S. (2008). The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: A finite element analysis. Journal of Orthopaedic Research, 27, 195–201.CrossRefGoogle Scholar
  18. 18.
    Byrd, J. W., Jones, K. S., Smith, T. F., & Waterman, M. S. (2000). Prospective analysis of hip arthroscopy with 2-year follow-up. Arthroscopy, 16, 578–587.Google Scholar
  19. 19.
    Brown, T. (1983). In vitro contact stress distributions in the natural human hip. Journal of Biomechanics, 16, 373–384.CrossRefGoogle Scholar
  20. 20.
    Ahmad, M. C., Cohen, Z., Levine, W., Ateshian, G., & Mow, V. (2001). Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. American Journal of Sports Medicine, 29, 201–206.Google Scholar
  21. 21.
    Hodge, W., Carlson, K., Fijan, R., Burgess, R., Riley, P., Harris, W., et al. (1989). Contact pressures from an instrumented hip endoprostheses. Journal of Bone and Joint Surgery, 71, 1378–1386.Google Scholar
  22. 22.
    Xishi, W., Tianying, W., Fuchuan, J., & Yixiang, D. (2005). The hip stress level analysis for human routine activities. Biomedical Engineering: Applications, Basis and Communications, 17, 43–48.Google Scholar
  23. 23.
    Mavcic, B., Pompe, B., Antolic, V., Daniel, M., Iglic, A., & Kralj-Iglic, V. (2002). Mathematical estimation of stress distribution in normal and dysplastic human hips. Journal of Orthopaedic Research, 20, 1025–1030.CrossRefGoogle Scholar
  24. 24.
    Maciel, A., Sarni, S., Boulic, R., & Thalmann, D. (2005). Stress distribution visualization on pre- and post-operative virtual hip joint. In: Proceedings of Computer Assisted Orthopaedic Surgery (CAOS05) (pp. 298–301).Google Scholar
  25. 25.
    Ahmet, C., Vahdet, U., & Recep, K. (2007). Three-dimensional anatomic finite element modelling of hemi-arthroplasty of human hip joint. Trends in Biomaterials and Artificial Organs, 21, 63–72.Google Scholar
  26. 26.
    Harris, M. D., Anderson, A. E., Henak, C. R., Ellis, B. J., Peters, C. L., & Weiss, J. A. (2012). Finite element prediction of cartilage contact stresses in normal human hips. Journal of Orthopaedic Research, 30(7), 1133–1139.CrossRefGoogle Scholar
  27. 27.
    Henak, C. R., Anderson, A. E., & Weiss, J. A. (2013). Subject-specific analysis of joint contact mechanics: Application to the study of osteoarthritis and surgical planning. Journal of Biomechanical Engineering, 135(2), in press.Google Scholar
  28. 28.
    Magnenat-Thalmann, N., Charbonnier, C., & Schmid, J. (2008). Multimedia application to the simulation of human musculoskeletal system: A visual lower limb model from multimodal captured data. In: Proceedings of IEEE International Workshop in Signal Processing (pp. 520–525).Google Scholar
  29. 29.
    Schmid, J., Kim, J., & Magnenat-Thalmann, N. (2011). Robust statistical shape models for mri bone segmentation in presence of small field of view. Medical Image Analysis, 15, 155–168.CrossRefGoogle Scholar
  30. 30.
    Gilles, B., & Magnenat-Thalmann, N. (2010). Musculoskeletal mri segmentation using multi-resolution simplex meshes with medial representations. Medical Image Analysis, 14, 291–302.CrossRefGoogle Scholar
  31. 31.
    Schmid, J., & Magnenat-Thalmann, N. (2008). Mri bone segmentation using deformable models and shape priors. In: Proceedings of International Conference Medical image Computing and Computer Assisted Intervention (MICCAI) (Vol. 5241, pp. 119–126). Heidelberg: Springer.Google Scholar
  32. 32.
    Volino, P., & Magnenat-Thalmann, N. (2005). Implicit midpoint integration and adaptive damping for efficient cloth simulation. Computer Animation and Virtual Worlds, 16, 163–175.CrossRefGoogle Scholar
  33. 33.
    Schmid, J., Sandholm, S., Chung, F., Thalmann, D., Delingette, H., & Magnenat-Thalmann, N. (2009) Musculoskeletal simulation model generation from mri datasets and motion capture data. In: Recent advances in the 3D Physiological Human (pp. 3–20). Heidelberg: Springer.Google Scholar
  34. 34.
    Shephard, M., & Georges, M. (1991). Three-dimensional mesh generation by finite octree technique. International Journal for Numerical Methods in Engineering, 32, 709–749.CrossRefzbMATHGoogle Scholar
  35. 35.
    Lohner, R. (1996). Progress in grid generation via the advancing front technique. Engineering with Computers, 39, 501–511.Google Scholar
  36. 36.
    Alliez, P., Cohen-Steiner, D., Yvinec, M., & Desbrun, M. (2005). Variational tetrahedral meshing. In: SIGGRAPH05 (pp. 193–204).Google Scholar
  37. 37.
    Assassi, L., Charbonnier, C., Schmid, J., Volino, P., & Magnenat-Thalmann, N. (2009). From mri to anatomical simulation of the hip joint. Computer Animation Virtual World, 20, 53–66.CrossRefGoogle Scholar
  38. 38.
    Assassi, L., Guillard., G., Gilles., B., & Magnenat-Thalmann, N. (2007). Volumetric meshes based on medial representation for medical applications. In: Proceedings of Computer Assisted Orthopaedic Surgery (CAOS07) (pp. 259–262).Google Scholar
  39. 39.
    Magnenat-Thalmann, N., Schmid, J., Assassi, L., & Volino, P. (2010). A comprehensive methodology to visualize articulations for the physiological human. In: Cyberworlds. IEEE Computer Society (pp. 1–8).Google Scholar
  40. 40.
    Molino, N., Bridson, R., Teran, J., & Fedkiw, R. (2003). A crystalline red green strategy for meshing highly deformable object with tetrahedral. In: Proceedings of the 12th International Meshing Roundtable (pp. 103–114).Google Scholar
  41. 41.
    Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., et al. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion- part I: Ankle, hip and spine. Journal of Biomechanics, 35, 543–548.Google Scholar
  42. 42.
    Gilles, B., Kolo-Christophe, F., Magnenat-Thalmann, N., Becker, C., Duc, S., Menetrey, J., et al. (2009). Mri-based assessment of hip joint translations. Journal of Biomechanics, 12, 1201–1205.CrossRefGoogle Scholar
  43. 43.
    Benoit, D., Ramsey, D., Lamontagne, M., Xu, L., Wretenberg, P., & Renstroem, P. (2006). Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait and Posture, 24, 152–164.CrossRefGoogle Scholar
  44. 44.
    Cappozzo, A., Catani, F., Leardini, A., Benedetti, M., & Croce, U. D. (1996). Position and orientation in space of bones during movement: experimental artefacts. Clinical Biomechanics, 11, 90–100.CrossRefGoogle Scholar
  45. 45.
    Garling, E., Kaptein, B., Mertens, B., Barendregt, W., Veeger, H., Nelissen, R., et al. (2007). Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics, 40, 18–24.CrossRefGoogle Scholar
  46. 46.
    Kepple, T., Arnold, A., Stanhope, S., & Siegel, K. (1994). Assessment of a method to estimate muscle attachments from surface landmarks: A 3d computer graphics approach. Journal of Biomechanics, 27, 365–371.CrossRefGoogle Scholar
  47. 47.
    Lawrence, C., & Tits, A. (2001). A computationally efficient feasible sequential quadratic programming algorithm. SIAM Journal on Optimization, 11, 1092–1118.CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Charbonnier, C., Assassi, L., Volino, P., & Magnenat-Thalmann, N. (2009). Motion study of the hip joint in extreme postures. The Visual Computer, 25, 873–882.CrossRefGoogle Scholar
  49. 49.
    Charbonnier, C., Lyard, E., & Magnenat-Thalmann, N. (2008). Analysis of extreme hip motion in professional ballet dancers. In: Proceedings of 10th International Symposium of 3D Analysis of Human Movement. Amsterdam.Google Scholar
  50. 50.
    Park, S., Krebs, D., & Mann, R. (1999). Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation. Gait and Posture, 10, 311–322.Google Scholar
  51. 51.
    Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. (2007). Model based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22, 131–154.CrossRefGoogle Scholar
  52. 52.
    Damsgaard, M., Rasmussen, J., Christensen, S., Surma, E., & de Zee, M. (2006). Analysis of musculoskeletal systems in the anybody modeling system. Simulation Modelling Practice and Theory, 14, 1100–1111.CrossRefGoogle Scholar
  53. 53.
    Delp, S., Loan, J., Hoy, M., Zajac, F., Topp, E., & Rosen, J. (1990). An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 37, 757–767.CrossRefGoogle Scholar
  54. 54.
    Piazza, S., & Delp, S. (1996). The influence of muscles on knee flexion during the swing phase of gait. Journal of Biomechanics, 29, 723–733.CrossRefGoogle Scholar
  55. 55.
    Fox, M., Reinbolt, J., Unpuu, S., & Delp, S. (2009). Mechanisms of improved knee flexion after rectus femoris transfer surgery. Journal of Biomechanics, 42, 614–619.CrossRefGoogle Scholar
  56. 56.
    Rasmussen, J., & de Zee, M. (2008). Design optimization of airline seats. SAE International Journal of Passenger Cars—Electronic and Electrical Systems, 1, 580–584.Google Scholar
  57. 57.
    Sandholm, A., Pronost, N., & Thalmann, D. (2009). Motionlab: A matlab toolbox for extracting and processing experimental motion capture data for neuromuscular simulations. In: Proceedings of the Second 3D Physiological Human, Workshop (3DPH) (Vol. 5903).Google Scholar
  58. 58.
    Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., et al. (2007). Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54, 1940–1950.CrossRefGoogle Scholar
  59. 59.
    Irving, G., Teran, J., & Fedkiw, R. (2004). Invertible finite elements for robust simulation of large deformation. In: ACM SIGGRAPH’04 (Vol. 131, pp. 131–140). ACM Press.Google Scholar
  60. 60.
    Volino P., Magnenat-Thalmann, N., & Faure, F. (2009). A Simple Approach to nonlinear tensile stiffness for accurate cloth simulation. In: ACM Transactions on Graphics (Vol. 28, pp. 105–116). ACM Press.Google Scholar
  61. 61.
    Volino, P., & Magnenat-Thalmann, N. (2007). Stop-and-go cloth draping. Visual Computer, 23, 669–677.CrossRefGoogle Scholar
  62. 62.
    Finite Element Software: FEBio,
  63. 63.
    SOFA:Simulation Open-Framework Architecture,
  64. 64.
    Finite Element Software:Code-Aster,
  65. 65.
    Pfirrmann, C., Mengiardi, B., Dora, C., Kalberer, F., Zanetti, M., & Hodler, J. (2006). Cam and pincer femoroacetabular impingement: Characteristic mr arthrographic findings in 50 patients. Journal of Radiology, 240, 778–785.Google Scholar
  66. 66.
    Dalstra, M., Huiskes, R., & Van-Erning, L. (1995). Development and validation of a three-dimensional finite element model of the pelvic bone. Journal of Biomechanical Engineering, 117, 272–278.CrossRefGoogle Scholar
  67. 67.
    Park, S., Hung, C., & Ateshian, G. (2004). Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage, 12, 65–73.CrossRefzbMATHGoogle Scholar
  68. 68.
    Ferguson, S., Bryant, J., & Ito, K. (2001). The material properties of the bovine acetabular labrum. Journal of Orthopaedic Research, 19, 887–896.CrossRefGoogle Scholar
  69. 69.
    Henak, C. R., Ellis, B. J., Harris, M. D., Anderson, A. E., Peters, C. L., & Weiss, J. A. (2011). Role of the acetabular labrum in load support across the hip joint. Journal of Biomechanics, 44, 2201–2206.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.MIRALabUniversity of Geneva, BattelleGenevaSwitzerland
  2. 2.Institute for Media InnovationNanyang Technological UniversitySingaporeSingapore

Personalised recommendations