Advertisement

Multi-Objective Scheduling

  • Jose M. Framinan
  • Rainer Leisten
  • Rubén Ruiz García
Chapter

Abstract

Starting with Chap.  3, where scheduling models were presented, followed by Chaps.   4 and  5 where constraints and scheduling objectives were outlined, a common assumption so far in this book has been that every scheduling problem and its corresponding model has one single objective or criterion to optimise.

Keywords

Schedule Problem Pareto Front Objective Space Pareto Optimisation Total Tardiness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abraham, A., Jain, L., and Goldberg, R., editors (2005). Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. Springer-Verlag, London.Google Scholar
  2. Bagchi, T. P. (1999). Multiobjective Scheduling by Genetic Algorithms. Kluwer Academic Publishers, Dordrecht.CrossRefzbMATHGoogle Scholar
  3. Coello, C. A. (2004). Applications of Multi-Objective Evolutionary Algorithms. World Scientific Publishing Company, Singapore.CrossRefzbMATHGoogle Scholar
  4. Coello, C. A., Lamont, G. B., and van Veldhuizen, D. A. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, New York, second edition.Google Scholar
  5. Collette, Y. and Siarry, P. (2003). Multiobjective Optimization: Principles and Case Studies. Springer-Verlag, Berlin-Heidelberg.Google Scholar
  6. Daniels, R. L. and Chambers, R. J. (1990). Multiobjective flow-shop scheduling. Naval research logistics, 37(6):981–995.CrossRefzbMATHGoogle Scholar
  7. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, West Sussex, England.zbMATHGoogle Scholar
  8. Deb, K. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197.CrossRefMathSciNetGoogle Scholar
  9. Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin-Heidelberg, second edition.Google Scholar
  10. Emmons, H. (1975). A note on a scheduling problem with dual criteria. Naval Research Logistics Quarterly, 22(3):615–616.CrossRefzbMATHMathSciNetGoogle Scholar
  11. Geiger, M. J. (2007). On operators and search space topology in multi-objective flow shop scheduling. European Journal of Operational Research, 181(1):195–206.CrossRefzbMATHMathSciNetGoogle Scholar
  12. Grunert da Fonseca, V., Fonseca, C. M., and Hall, A. O. (2001). Inferential performance assessment of stochastic optimisers and the attainment function. In Zitzler, E., Deb, K., Thiele, L., Coello Coello, C. A., and Corne, D., editors, Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, volume 1993 of Lecture Notes in Computer Science, pages 213–225, Berlin. Springer.Google Scholar
  13. Gupta, J. N. D. and Werner, F. (1999). On the solution of 2-machine flow and open shop scheduling problems with secondary criteria. In 15th ISPE/IEE International Conference on CAD/CAM, Robotic, and Factories of the Future, Aguas de Lindoia, Sao Paulo, Brasil. Springer-Verlag.Google Scholar
  14. Knowles, J., Corne, D., and Deb, K. (2008). Multiobjective Problem Solving From Nature: From Concepts to Applications. Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
  15. Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland. revised version.Google Scholar
  16. López-Ibáñez, M., Paquete, L. F., and Stützle, T. (2006). Hybrid population-based algorithms for the bi-objective quadratic assignment problem. Journal of Mathematical Modelling and Algorithms, 5(1):111–137.CrossRefzbMATHMathSciNetGoogle Scholar
  17. López-Ibáñez, M., Stützle, T., and Paquete, L. F. (2010). Graphical tools for the analysis of bi-objective optimization algorithms. In Proceedings of the 12th annual conference on Genetic and evolutionary computation (GECCO 2010), pages 1959–1962, New York, NY, USA. ACM.Google Scholar
  18. Mc Cormick, S. T. and Pinedo, M. (1995). Scheduling \(n\) independant jobs on \(m\) uniform machines with both flowtime and makespan objectives: a parametric analysis. ORSA Journal on Computing, 7(1):63–77.CrossRefGoogle Scholar
  19. Minella, G., Ruiz, R., and Ciavotta, M. (2008). A review and evaluation of multi-objective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20(3):451–471.CrossRefzbMATHMathSciNetGoogle Scholar
  20. Minella, G., Ruiz, R., Ciavotta, M. (2011). Restarted iterated pareto greedy algorithm for multi-objective flowshop scheduling problems. Computers & Operations Research, 38(11):1521–1533CrossRefMathSciNetGoogle Scholar
  21. Nagar, A., Heragu, S. S., and Haddock, J. (1995). A branch-and-bound approach for a two-machine flowshop scheduling problem. Journal of the Operational Research Society, 46(6):721–734.zbMATHGoogle Scholar
  22. Paquete, L. F. (2005). Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization: Method and Analysis. PhD thesis, Computer Science Department. Darmstadt University of Technology. Darmstadt, Germany.Google Scholar
  23. Perez-Gonzalez, P. Framinan, J. M. (2014). A Common Framework and Taxonomy for Multicriteria Scheduling Problems with interfering and competing jobs: Multi-agent scheduling problems, European Journal of Operational Research, 235(1):1–16.Google Scholar
  24. Rajendran, C. (1992). Two-stage flowshopnn scheduling problem with bicriteria. Journal of the Operational Research Society, 43(9):871–884.zbMATHGoogle Scholar
  25. Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049.CrossRefzbMATHGoogle Scholar
  26. Sarin, S. C. and Hariharan, R. (2000). A two machine bicriteria scheduling problem. International Journal of Production Economics, 65(2):125–139.CrossRefGoogle Scholar
  27. Selen, W. J. and Hott, D. D. (1986). A mixed-integer goal-programming formulation of the standard flowshop scheduling problem. Journal of the Operational Research Society, 37(12):1121–1128.zbMATHGoogle Scholar
  28. Sivrikaya-Şerifoğlu, F. and Ulusoy, G. (1998). A bicriteria two-machine permutation flowshopn problem. European Journal of Operational Research, 107(2):414–430.CrossRefzbMATHGoogle Scholar
  29. Srinivas, N. and Deb, K. (1994). Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248.CrossRefGoogle Scholar
  30. Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2):278–285.CrossRefzbMATHGoogle Scholar
  31. T’Kindt, V. and Billaut, J.-C. (2001). Multicriteria schduling problems: A survey. RAIRO Recherche operationnelle - Operations Research, 35(2):143–163.CrossRefzbMATHMathSciNetGoogle Scholar
  32. T’Kindt, V. and Billaut, J.-C. (2006). Multicriteria Scheduling: Theory, Models and Algorithms. Springer, New York, second edition.Google Scholar
  33. Varadharajan, T. and Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for scheduling in flowshopns to minimize the makespan and total flowtime of jobs. European Journal of Operational Research, 167(3):772–795.CrossRefzbMATHMathSciNetGoogle Scholar
  34. Vignier, A., Billaut, J.-C., and Proust, C. (1999). Les problèmes d’ordonnancement de type flow-shop hybride: État de l’art. RAIRO Recherche opérationnelle, 33(2):117–183. In French.zbMATHMathSciNetGoogle Scholar
  35. Wilson, J. M. (1989). Alternative formulations of a flowshopn scheduling problem. Journal of the Operational Research Society, 40(4):395–399.zbMATHGoogle Scholar
  36. Zitzler, E., Knowles, J., and Thiele, L. (2008). Quality assessment of pareto set approximations. In Multiobjective Optimization: Interactive and Evolutionary Approaches, pages 373–404, Berlin, Heidelberg. Springer-Verlag.Google Scholar
  37. Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4): 257–271.Google Scholar
  38. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE, Transactions on Evolutionary Computation, 7(2):117–132.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Jose M. Framinan
    • 1
  • Rainer Leisten
    • 2
  • Rubén Ruiz García
    • 3
  1. 1.Departamento Organización Industrial y Gestión de EmpresasUniversidad de Sevilla Escuela Superior de IngenierosIsla de la CartujaSpain
  2. 2.Fakultät für Ingenieurwissenschaften Allgemeine Betriebswirtschaftslehre und Operations ManagementUniversität Duisburg-EssenDuisburgGermany
  3. 3.Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de InformáticaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations