Acquisition of Intercultural Data

  • Alexander Osherenko
Part of the Human–Computer Interaction Series book series (HCIS)


Commonly, computer systems rely on data, in the proposed approach on intercultural data. This chapter shows numerical approaches to deducing intercultural data using emotional-, personality- and culture-related information. Additional information is acquired from colloquial information about a particular culture, for example, information about its traditions, rites and rituals.


Personality Trait Hide Markov Model Training Sequence Affective Behavior Irish Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bird, S. (2006). NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on interactive presentation sessions, COLING-ACL ’06 (pp. 69–72). Stroudsburg: Association for Computational Linguistics. doi: 10.3115/1225403.1225421. CrossRefGoogle Scholar
  2. Costa, P., & McCrae, R. R. (1991). The NEO personality inventory: using the five-factor model in counseling. Journal of Counseling and Development, 69, 367–372. CrossRefGoogle Scholar
  3. Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M., & Schröder, M. (2000). ‘FEELTRACE’: an instrument for recording perceived emotion in real time. In Proceedings of the ISCA workshop on speech and emotion, Northern Ireland (pp. 19–24). Google Scholar
  4. Cushner, K., & Brislin, R. W. (1995). Intercultural interactions: a practical guide (cross cultural research and methodology) (2nd ed.). Thousand Oaks: Sage. ISBN:978-0-803-95991-0. Google Scholar
  5. Douglas-Cowie, E., Cowie, R., Sneddon, I., Cox, C., Lowry, O., McRorie, M., Martin, J. C., Devillers, L., Abrilian, S., Batliner, A., Amir, N., & Karpouzis, K. (2007). The HUMAINE database: addressing the collection and annotation of naturalistic and induced emotional data. In Proceedings of the 2nd international conference on affective computing and intelligent interaction (ACII), Lisbon, Portugal (pp. 488–500). CrossRefGoogle Scholar
  6. François, J. M. (2012). JAHMM. An implementation of hidden Markov models in Java.
  7. Gannon, M. J. (2007). Paradoxes of culture and globalization. Thousand Oaks: Sage. ISBN:978-1-412-94045-0. Google Scholar
  8. Gannon, M. J., & Pillai, R. R. K. (2012). Understanding global cultures: metaphorical journeys through 31 nations, clusters of nations, continents, and diversity (5th ed.). Thousand Oaks: Sage. ISBN:978-1-412-99593-1. Google Scholar
  9. Godfrey, J. J., Holliman, E. C., & McDaniel, J. (1992). Switchboard: telephone speech corpus for research and development. In IEEE international conference on acoustics, speech, and signal processing, ICASSP-92 (Vol. 1, pp. 517–5201). doi: 10.1109/ICASSP.1992.225858. Google Scholar
  10. Gupta, V., & Hanges, P. J. (2004). Regional and climate clustering of societal cultures. In R. J. House, P. J. Hanges, M. Javidan, P. W. Dorfman & V. Gupta (Eds.), Culture, leadership, and organizations: the globe study of 62 societies (1st ed., pp. 178–218). Thousand Oaks: Sage. ISBN:978-0-761-92401-2. Google Scholar
  11. Hofstede, G. (2001). Culture’s consequences: comparing values, behaviors, institutions and organizations across nations (2nd ed.). Thousand Oaks: Sage. ISBN:978-0-803-97324-4. Google Scholar
  12. Hofstede, G. J., & Pedersen, P. (1999). Synthetic cultures: intercultural learning through simulation games. Simulation & Gaming, 30(4), 415–440. doi: 10.1177/104687819903000402. CrossRefGoogle Scholar
  13. Hofstede, G. J., Smith, D. M., & Hofstede, G. (2002). Exploring culture: exercises, stories and synthetic cultures. Boston: Nicholas Brealey. Google Scholar
  14. Ide, N. (2012). Multimasc: an open linguistic infrastructure for language research. In Proceedings of the fifth workshop on building and using comparable corpora. Google Scholar
  15. John, O. P., Donahue, E. M., & Kentle, R. L. (1999). The “Big Five” inventory: versions 4a and 5b (Tech. rep.). Berkeley: University of California, Institute of Personality and Social Research. Google Scholar
  16. John, O., Naumann, L., & Soto, C. (2008). Paradigm shift to the integrative big-five trait taxonomy: history, measurement, and conceptual issues. In O. P. John, R. W. Robins & L. A. Pervin (Eds.), Handbook of personality: theory and research (2nd ed., pp. 114–158). New York: Guilford. ISBN:978-1-593-85650-2. Google Scholar
  17. Juang, B. H., & Rabiner, L. R. (1990). The segmental K-means algorithm for estimating parameters of hidden Markov models. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(9). doi: 10.1109/29.60082.
  18. Kipp, M. (2005). Gesture generation by imitation: from human behavior to computer character animation. Google Scholar
  19. Koehn, P. (2005). Europarl: a parallel corpus for statistical machine translation. In Conference proceedings: the tenth machine translation summit (pp. 79–86). Phuket: AAMT. Google Scholar
  20. Mairesse, F., Walker, M. A., Mehl, M. R., & Moore, R. K. (2007). Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of Artificial Intelligence Research, 30, 457–500. zbMATHGoogle Scholar
  21. Mascarenhas, S., Dias, J., Afonso, N., Enz, S., & Paiva, A. (2009). Using rituals to express cultural differences in synthetic characters. In AAMAS ’09: proceedings of the 8th international conference on autonomous agents and multiagent systems, Richland: International Foundation for Autonomous Agents and Multiagent Systems (pp. 305–312). ISBN:978-0-9817381-6-1. Google Scholar
  22. Picard, R. (1997). Affective computing. Cambridge: MIT Press. Google Scholar
  23. Plutchik, R. (1994). The psychology and biology of emotion. New York: Harpercollins College. Google Scholar
  24. Rafalovitch, A., & Dale, R. (2009). United nations general assembly resolutions: a six-language parallel corpus. In Proceedings of the MT summit XII (pp. 292–299). Allschwil: International Association of Machine Translation. Google Scholar
  25. Robins, R. W., Fraley, R. C., & Krueger, R. F. (Eds.) (2007). Handbook of research methods in personality psychology (1st ed.). New York: Guilford. ISBN:978-1-593-85111-8. Google Scholar
  26. Sorrells, K. (2012). Intercultural communication: globalization and social justice. Thousand Oaks: Sage. ISBN:978-1-412-92744-4. Google Scholar
  27. Stone, P. J. (1966). The general inquirer: a computer approach to content analysis. Cambridge: MIT Press. Google Scholar
  28. Stone, P. J., Dunphy, D. C., Smith, M. S., & Ogilvie, D. M. (1966). The general inquirer: a computer approach to content analysis. Cambridge: MIT Press. Google Scholar
  29. Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29, 24–54. doi: 10.1177/0261927X09351676. CrossRefGoogle Scholar
  30. Whissell, C. (1989). The dictionary of affect in language. In R. Plutchik & H. Kellerman (Eds.), Emotion. Theory, research and experience: Vol. 4. The measurement of emotions (pp. 113–131). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Alexander Osherenko
    • 1
  1. 1.Socioware DevelopmentAugsburgGermany

Personalised recommendations