Advertisement

Fuel Cells and Batteries In Silico Experimentation Through Integrative Multiscale Modeling

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Devices for electrochemical energy conversion and storage exist at different levels of development, from the early stages of R&D to mature and deployed technologies. Thanks to the very significant progresses achieved in the field of computational science over the past few decades, multiscale modeling and numerical simulation are emerging as powerful tools for in silico studies of mechanisms and processes in these devices. These innovative approaches allow linking the chemical/microstructural properties of materials and components with their macroscopic efficiency. In combination with dedicated experiments, they can potentially provide tremendous progress in designing and optimizing the next-generation electrochemical cells. This chapter provides a comprehensive overview of the theory and practical aspects of integrative multiscale modeling tools within the context of fuel cells and rechargeable batteries. Additionally, the chapter discusses technical dreams and methodological challenges that computational science is facing today in order to help developing efficient, durable, and low-cost electrochemical energy devices but also to trigger major technological breakthroughs.

Keywords

Composite Electrode Multiscale Modeling Dissipative Particle Dynamics Solid Electrolyte Interphase Kinetic Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Franco A (ed) (2015) Rechargeable lithium batteries: from fundamentals to applications. ElsevierGoogle Scholar
  2. 2.
    Franco AA (ed) (2013) Polymer electrolyte fuel cells: science, applications, and challenges. CRC PressGoogle Scholar
  3. 3.
    Franco AA (2013) Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv 3(32):13027–13058CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Haddad L, Duprat G, Seuil (2006) Mondes: Mythes et Images de l’UniversGoogle Scholar
  6. 6.
    Couenne F, Jallut C, Maschke B, Breedveld P, Tayakout M (2006) Math Comput Modell Dyn Syst 12(2–3):159Google Scholar
  7. 7.
    Franco AA, Schott P, Jallut C, Maschke B (2007) A multi-scale dynamic mechanistic model for the transient analysis of PEFCs. Fuel Cells 7(2):99–117CrossRefGoogle Scholar
  8. 8.
    Bessler WG, Gewies S, Vogler M (2007) A new framework for physically based modeling of solid oxide fuel cells. Electrochim Acta 53(4):1782–1800CrossRefGoogle Scholar
  9. 9.
    Wang CY, Srinivasan V (2002) Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling. J Power Sources 110(2):364–376CrossRefGoogle Scholar
  10. 10.
    Methekar RN, Northrop PW, Chen K, Braatz RD, Subramanian VR (2011) Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries: passive layer formation. J Electrochem Soc 158(4):A363–A370CrossRefGoogle Scholar
  11. 11.
    Quiroga MA, Franco AA (2015) A multi-paradigm computational model of materials electrochemical reactivity for energy conversion and storage. J Electrochem Soc 162(7):E73–E83CrossRefGoogle Scholar
  12. 12.
    Andreaus B, Maillard F, Kocylo J, Savinova ER, Eikerling M (2006) Kinetic modeling of COad monolayer oxidation on carbon-supported platinum nanoparticles. J Phys Chem B 110(42):21028–21040CrossRefGoogle Scholar
  13. 13.
    De Morais RF, Sautet P, Loffreda D, Franco AA (2011) A multiscale theoretical methodology for the calculation of electrochemical observables from ab initio data: application to the oxygen reduction reaction in a Pt (111)-based polymer electrolyte membrane fuel cell. Electrochim Acta 56(28):10842–10856CrossRefGoogle Scholar
  14. 14.
    Fantauzzi D, Zhu T, Mueller JE, Filot IA, Hensen EJ, Jacob T (2015) Microkinetic modeling of the oxygen reduction reaction at the Pt (111)/gas interface. Catal Lett 145(1):451–457CrossRefGoogle Scholar
  15. 15.
    Eikerling MH, Malek K, Wang Q (2008) Catalyst layer modeling: structure, properties and performance. In: PEM fuel cell electrocatalysts and catalyst layers. Springer, London, pp 381–446Google Scholar
  16. 16.
    Franco AA, Frayret C (2014) Modeling in the design of batteries for large and medium-scale energy storage, book chapter. In: Menictas C, Skyllas-Kazacos M, Lim TM (eds) Advances in batteries for large- and medium-scale energy storage. Elsevier/Woodhead, CambridgeGoogle Scholar
  17. 17.
    Sheppard D, Terrell R, Henkelman G (2008) Optimization methods for finding minimum energy paths. J Chem Phys 128(13):134106Google Scholar
  18. 18.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904CrossRefGoogle Scholar
  19. 19.
    Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985CrossRefGoogle Scholar
  20. 20.
    Ferreira de Morais R, Franco AA, Sautet P, Loffreda D (2015) Interplay between reaction mechanism and hydroxyl species for water formation on Pt (111). ACS Catal 5(2):1068–1077Google Scholar
  21. 21.
    Yu Y, Zuo Y, Zuo C, Liu X, Liu Z (2014) A hierarchical multiscale model for microfluidic fuel cells with porous electrodes. Electrochim Acta 116:237–243CrossRefGoogle Scholar
  22. 22.
    Malek K, Franco AA (2011) Microstructure-based modeling of aging mechanisms in catalyst layers of polymer electrolyte fuel cells. J Phys Chem B 115(25):8088–8101Google Scholar
  23. 23.
    Kim GH, Smith K, Lee KJ, Santhanagopalan S, Pesaran A (2011) Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. J Electrochem Soc 158(8):A955–A969CrossRefGoogle Scholar
  24. 24.
    Prigogine I (1967) Introduction to thermodynamics of irreversible processes, vol 1, 3rd edn. Interscience, New YorkGoogle Scholar
  25. 25.
    Georgiadis MC, Myrian S, Efstratios N, Gani R (2002) Comput Chem Eng 26:735CrossRefGoogle Scholar
  26. 26.
    Franco AA (2005) A physical multi-scale model of the electrochemical dynamics in a polymer electrolyte fuel cell—an infinite dimensional Bond Graph approach. PhD Thesis Université Claude Bernard Lyon-1 (France) no. 2005LYO10239Google Scholar
  27. 27.
    Bozic S, Kondov I (2012). In: Cunningham P, Cunningham M (eds) eChallenges e-2012 conference proceedings. IIMC International Information Management CorporationGoogle Scholar
  28. 28.
  29. 29.
  30. 30.
    Elwasif WR, Bernholdt DE, Pannala S, Allu S, Foley SS (2012) 2012 IEEE 15th international conference on computational science and engineering, cse, pp 102–110Google Scholar
  31. 31.
    Franco AA (2014) Physical modeling and numerical simulation of direct alcohol fuel cells. In Direct alcohol fuel cells. Springer, Netherlands, pp 271–319Google Scholar
  32. 32.
    Hu G, Li G, Zheng Y, Zhang Z, Xu Y (2014) J Energy Inst 87:163Google Scholar
  33. 33.
    Song D, Wang Q, Liu Z, Eikerling M, Xie Z, Navessin T, Holdcroft S (2005). A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochimica Acta 50(16):3347–3358Google Scholar
  34. 34.
    Moore M, Wardlaw P, Dobson P, Boisvert JJ, Putz A, Spiteri RJ, Secanell M (2014) Understanding the effect of kinetic and mass transport processes in cathode agglomerates. J Electrochem Soc 161(8):E3125–E3137Google Scholar
  35. 35.
    Xing L et al (2014) Numerical investigation of the optimal Nafion® ionomer content in cathode catalyst layer: An agglomerate two-phase flow modelling. Int J Hydr En 39:9087–9104Google Scholar
  36. 36.
    Dargaville S, Farrell TW (2010) Predicting active material utilization in LiFePO4 electrodes using a multiscale mathematical model. J Electrochem Soc 157(7):A830–A840CrossRefGoogle Scholar
  37. 37.
    Zhang X, Ostadi H, Jiang K, Chen R (2014) Reliability of the spherical agglomerate models for catalyst layer in polymer electrolyte membrane fuel cells. Electrochimica Acta 133:475–483Google Scholar
  38. 38.
    Roberts SA, Brunini VE, Long KN, Grillet AM (2014) A framework for three-dimensional mesoscale modeling of anisotropic swelling and mechanical deformation in lithium-ion electrodes. J Electrochem Soc 161(11):F3052–F3059CrossRefGoogle Scholar
  39. 39.
    Kriston A, Pfrang A, Popov BN, Boon-Brett L (2014) Development of a full layer pore-scale model for the simulation of electro-active material used in power sources. J Electrochem Soc 161(8):E3235–E3247CrossRefGoogle Scholar
  40. 40.
    Liu Z, Battaglia V, Mukherjee PP (2014) Mesoscale elucidation of the influence of mixing sequence in electrode processing. Langmuir 30(50):15102–15113CrossRefGoogle Scholar
  41. 41.
    Sanyal J, Goldin GM, Zhu H, Kee RJ (2010) A particle-based model for predicting the effective conductivities of composite electrodes. J Power Sources 195(19):6671–6679CrossRefGoogle Scholar
  42. 42.
    Gawel DA, Pharoah JG, Beale SB (2015) Development of a SOFC performance model to analyze the powder to power performance of electrode microstructures. ECS Trans 68(1):1979–1987CrossRefGoogle Scholar
  43. 43.
    Kong W, Zhang Q, Gao X, Zhang J, Chen D, Su S (2015) A method for predicting the tortuosity of pore phase in solid oxide fuel cells electrode. Int J Electrochem Sci 10:5800–5811Google Scholar
  44. 44.
    Bertei A, Pharoah JG, Gawel DAW, Nicolella C (2014) A particle-based model for effective properties in infiltrated solid oxide fuel cell electrodes. J Electrochem Soc 161(12):F1243–F1253CrossRefGoogle Scholar
  45. 45.
    Grew KN, Chiu WK (2012) A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. J Power Sources 199:1–13CrossRefGoogle Scholar
  46. 46.
    Cai Q, Adjiman CS, Brandon NP (2011) Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: computational parameters. Electrochim Acta 56(16):5804–5814CrossRefGoogle Scholar
  47. 47.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657Google Scholar
  48. 48.
    Kamaya N et al (2011) A lithium superionic conductor. Nat Mater 10:682CrossRefGoogle Scholar
  49. 49.
    Huang H (2014) MSc. thesis, Université de Picardie Jules Verne, Amiens, FranceGoogle Scholar
  50. 50.
    Cundall PA, Strack ODL (1979) A distinct element method for modeling granular assemblies. Geotechnique 29:47–65Google Scholar
  51. 51.
    Nishida Y, Itoh S (2011) A modeling study of porous composite microstructures for solid oxide fuel cell anodes. Electrochimica Acta 56(7):2792–2800.Google Scholar
  52. 52.
    Nguyen TK, Huang H, Franco AA (2015) Paper in preparationGoogle Scholar
  53. 53.
    Malek K, Eikerling M, Wang Q, Navessin T, Liu Z (2007) Self-organization in catalyst layers of polymer electrolyte fuel cells. J Phys Chem C 111(36):13627–13634CrossRefGoogle Scholar
  54. 54.
    Malek K, Mashio T, Eikerling M (2011) Microstructure of catalyst layers in PEM fuel cells redefined: a computational approach. Electrocatalysis 2(2):141–157CrossRefGoogle Scholar
  55. 55.
    Cheng CH, Malek K, Djilali N (2008) The effect of Pt cluster size on micro-morphology of PEMFC catalyst layers-a molecular dynamics simulation. ECS Trans 16(2):1405–1411CrossRefGoogle Scholar
  56. 56.
    Franco AA, Gerard M (2008) Multiscale model of carbon corrosion in a PEFC: coupling with electrocatalysis and impact on performance degradation. J Electrochem Soc 155(4):B367–B384CrossRefGoogle Scholar
  57. 57.
    Franco AA, Passot S, Fugier P, Anglade C, Billy E, Guétaz L, Fugier P, Mailley S (2009) PtxCoy catalysts degradation in PEFC environments: mechanistic insights I. multiscale modeling. J Electrochem Soc 156(3):B410–B424CrossRefGoogle Scholar
  58. 58.
    Coulon R, Bessler W, Franco AA (2010) Modeling chemical degradation of a polymer electrolyte membrane and its impact on fuel cell performance. ECS Trans 25(35):259–273CrossRefGoogle Scholar
  59. 59.
    Franco AA, Coulon R, de Morais RF, Cheah SK, Kachmar A, Gabriel MA (2009) Multi-scale modeling-based prediction of PEM Fuel Cells MEA durability under automotive operating conditions. ECS Trans 25(1):65–79CrossRefGoogle Scholar
  60. 60.
    Cheah SK, Sicardy O, Marinova M, Guetaz L, Lemaire O, Gélin P, Franco AA (2011) CO impact on the stability properties of PtxCoy nanoparticles in PEM fuel cell anodes: mechanistic insights. J Electrochem Soc 158(11):B1358–B1367CrossRefGoogle Scholar
  61. 61.
    Franco AA (2007) Transient multi-scale modelling of ageing mechanisms in a polymer electrolyte fuel cell: an irreversible thermodynamics approach. ECS Trans 6(10):1–23CrossRefGoogle Scholar
  62. 62.
    Franco AA, Tembely M (2007) Transient multiscale modeling of aging mechanisms in a PEFC cathode. J Electrochem Soc 154(7):B712–B723CrossRefGoogle Scholar
  63. 63.
    Franco AA (2012) PEMFC degradation modeling and analysis, book chapter. In: Hartnig C, Roth C (eds) Polymer electrolyte membrane and direct methanol fuel cell technology (PEMFCs and DMFCs)—Vol 1: fundamentals and performance. Woodhead, CambridgeGoogle Scholar
  64. 64.
    Quiroga MA, Malek K, Franco AA (2015) J Electrochem Soc, in press.Google Scholar
  65. 65.
    Strahl S, Husar A, Franco AA (2014) Electrode structure effects on the performance of open-cathode proton exchange membrane fuel cells: a multiscale modeling approach. Int J Hydrogen Energy 39(18):9752–9767CrossRefGoogle Scholar
  66. 66.
    Franco AA, Xue KH (2013) Carbon-based electrodes for lithium air batteries: scientific and technological challenges from a modeling perspective. ECS J Solid State Sc Tech 2(10):M3084–M3100Google Scholar
  67. 67.
    Xue KH, Nguyen TK, Franco AA (2014) Impact of the cathode microstructure on the discharge performance of lithium air batteries: a multiscale model. J Electrochem Soc 161(8):E3028–E3035CrossRefGoogle Scholar
  68. 68.
    Bevara V, Andrei P (2014) Changing the cathode microstructure to improve the capacity of Li-air batteries: theoretical predictions. J Electrochem Soc 161(14):A2068–A2079CrossRefGoogle Scholar
  69. 69.
    Olivares-Marín M, Palomino P, Enciso E, Tonti D (2014) Simple method to relate experimental pore size distribution and discharge capacity in cathodes for Li/O2 batteries. J Phys Chem C 118(36):20772–20783CrossRefGoogle Scholar
  70. 70.
    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137–1164Google Scholar
  71. 71.
    Duduta M et al (2011) Semi‐Solid lithium rechargeable flow battery. Adv Energy Mater, 1(4):511–516Google Scholar
  72. 72.
    Hamelet S et al (2012) Non-aqueous Li-based redox flow batteries. J Electrochem Soc 159(8):A1360–A1367Google Scholar
  73. 73.
    Hamelet S, Larcher D, Dupont L, Tarascon JM (2013) Silicon-based non aqueous anolyte for li redox-flow batteries. J Electrochem Soc 160(3):A516–A520.Google Scholar
  74. 74.
    Brunini VE, Chiang YM, Carter WC (2012) Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries. Electrochimica Acta 69:301–307Google Scholar
  75. 75.
    Smith KC, Chiang YM, Carter WC (2014) Maximizing energetic efficiency in flow batteries utilizing non-Newtonian fluids. J Electrochem Soc 161(4):A486–A496Google Scholar
  76. 76.
    Grinberg L, Karniadakis G, Insley JA, Papka ME Brown University and Argonne National Laboratory. https://www.youtube.com/watch?v=tBga86M9Gm4 and https://www.youtube.com/watch?v=0hibGZi8TWs
  77. 77.
    Franco AA et al (2015) WONDERFUL project (Conseil Régional de Picardie and European Regional Development Fund)Google Scholar
  78. 78.
    Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155Google Scholar
  79. 79.
    Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150(11):A1523–A1527CrossRefGoogle Scholar
  80. 80.
    Fowler MW, Mann RF, Amphlett JC, Peppley BA, Roberge PR (2002) Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell. J Power Sources 106(1):274–283CrossRefGoogle Scholar
  81. 81.
    Baxter SF, Battaglia VS, White RE (1999) Methanol fuel cell model: anode. J Electrochem Soc 146(2):437–447CrossRefGoogle Scholar
  82. 82.
    Bao C, Bessler WG (2015) Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. model development. J Power Sources 275:922–934CrossRefGoogle Scholar
  83. 83.
    Zhang H, Haas H, Hu J, Kundu S, Davis M, Chuy C (2013) The impact of potential cycling on PEMFC durability. J Electrochem Soc 160(8):F840–F847Google Scholar
  84. 84.
    Biesheuvel PM, Franco AA, Bazant MZ (2009) Diffuse charge effects in fuel cell membranes. J Electrochem Soc 156(2):B225–B233CrossRefGoogle Scholar
  85. 85.
    Franco AA, Schott P, Jallut C, Maschke B (2006) A dynamic mechanistic model of an electrochemical interface. J Electrochem Soc 153(6):A1053–A1061CrossRefGoogle Scholar
  86. 86.
    Quiroga MA, Xue KH, Nguyen TK, Tułodziecki M, Huang H, Franco AA (2014) A multiscale model of electrochemical double layers in energy conversion and storage devices. J Electrochem Soc 161(8):E3302–E3310CrossRefGoogle Scholar
  87. 87.
    Damasceno Borges D, Franco AA, Malek K, Gebel G, Mossa S (2013) Inhomogeneous transport in model hydrated polymer electrolyte supported ultrathin films. ACS Nano 7(8):6767–6773CrossRefGoogle Scholar
  88. 88.
    Borges DD (2013) Etude computationnelle de la formation d’un film ultra-mince de Nafion à l’intérieur d’une couche catalytique de PEMFC. Doctoral dissertation, Université de GrenobleGoogle Scholar
  89. 89.
    Damasceno Borges D, Gebel G, Franco AA, Malek K, Mossa S (2014) Morphology of supported polymer electrolyte ultrathin films: a numerical study. J Phys Chem C 119(2):1201–1216CrossRefGoogle Scholar
  90. 90.
    Van der Ven A, Ceder G (2000) Lithium diffusion in layered Li x CoO2. Electrochem Solid-State Lett 3(7):301–304Google Scholar
  91. 91.
    Zhdanov VP (2007) Simulations of processes related to H2–O2 PEM fuel cells. J Electroanal Chem 607(1):17–24Google Scholar
  92. 92.
    Zhdanov VP, Kasemo B (2003) Role of the field fluctuations in electrochemical reactions. Appl Surf Sci 219(3):256–263Google Scholar
  93. 93.
  94. 94.
    Blanquer G, Yin Y, Quiroga M, Franco AA (2015) J Electrochem Soc (Submitted)Google Scholar
  95. 95.
    Xue KH, McTurk E, Johnson L, Bruce PG, Franco AA (2015) A comprehensive model for non-aqueous lithium air batteries involving different reaction mechanisms. J Electrochem Soc 162(4):A614–A621Google Scholar
  96. 96.
    Malek K, Maine E, McCarthy IP (2014) A typology of clean technology commercialization accelerators. J Eng Tech Manage 32:26–39Google Scholar
  97. 97.
    Franco AA, Guinard M, Barthe B, Lemaire O (2009) Impact of carbon monoxide on PEFC catalyst carbon support degradation under current-cycled operating conditions. Electrochim Acta 54(22):5267–5279Google Scholar
  98. 98.
    Parry V, Berthomé G, Joud JC, Lemaire O, Franco AA (2011) XPS investigations of the proton exchange membrane fuel cell active layers aging: characterization of the mitigating role of an anodic CO contamination on cathode degradation. J Power Sources, 196(5):2530–2538Google Scholar
  99. 99.
    Engl T, Käse J, Gubler L, Schmidt TJ (2014) On the positive effect of CO during start/stop in high-temperature polymer electrolyte fuel cells. ECS Electrochem Lett 3(7):F47–F49Google Scholar
  100. 100.
    Franco A, Lemaire O, Escribano S (2014) US Patent 8,871,399. Washington, DC: US Patent and Trademark Office.Google Scholar
  101. 101.
    Franco AA, Lemaire O, Escribano S (2008) FR patent EN 08. 50875Google Scholar
  102. 102.
    Islam MS, Fisher CA (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43(1):185–204Google Scholar
  103. 103.
    Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in Li x MPO 4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7(2):A30–A32Google Scholar
  104. 104.
    Danilov D, Niessen RAH, Notten PHL (2011) Modeling all-solid-state Li-ion batteries. J Electrochem Soc 158(3):A215–A222Google Scholar
  105. 105.
    Costamagna P, Costa P, Arato E (1998) Some more considerations on the optimization of cermet solid oxide fuel cell electrodes. Electrochimica Acta 43(8):967–972Google Scholar
  106. 106.
    Bertei A, Nucci B, Nicolella C (2013) Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chem Eng Sci 101:175–190Google Scholar
  107. 107.
    Franco AA, Thouvenin I et al (2014) MASTERS project (Conseil Régional de Picardie and European Regional Development Fund)Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Laboratoire de Réactivité et Chimie des SolidesUniversité de Picardie Jules Verne and CNRSAmiens CedexFrance
  2. 2.Réseau sur le Stockage Electrochimique de l’Energie (RS2E)FR CNRS 3459Amiens CedexFrance
  3. 3.ALISTORE European Research InstituteFR CNRS 3104Amiens CedexFrance

Personalised recommendations