Advertisement

Molecular Dynamics Simulations of Electrochemical Energy Storage Devices

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Many modelling problems in materials science involve finite temperature simulations with a realistic representation of the interatomic interactions. These problems often necessitate the use of large simulation cells or long run times, which puts them outside the range of direct first-principles simulation. This is particularly the case for energy storage systems, such as batteries or supercapacitors. For battery materials, it is possible to introduce polarizable potentials for the interactions, in which additional degrees of freedom provide a representation of the response of the electronic structure of the ions to their changing coordination environments. Such force field can be built on a purely first principles basis. Here we discuss the example of a Li-ion conductor, and we show how the long molecular dynamics simulations are useful for characterizing accurately the conduction mechanism. In particular, strong cooperative effects are observed, which impact strongly the electrical conductivity of the material. In the case of supercapacitors, the full electrochemical device can be modelled. However, this leads to very large simulation cell, which does not allow using polarizable force fields for the electrolytes. For the electrodes, fluctuating charges are used in order to maintain a constant electric potential as in electrochemical experiments. These simulations have allowed for a deep understanding of the charging mechanism of supercapacitors. In particular, the desolvation of the ions inside the porous carbon electrodes and the fast dynamic of charging can now be understood at the molecular scale.

Keywords

Ionic Liquid Molecular Dynamics Simulation Density Functional Theory Calculation Porous Carbon Nanoporous Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184CrossRefGoogle Scholar
  2. 2.
    Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  3. 3.
    Mueller T, Hautier G, Jain A, Ceder G (2011) Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem Mater 23:3854–3862CrossRefGoogle Scholar
  4. 4.
    Delacourt C, Ati M, Tarascon J-M (2011) Measurement of lithium diffusion coefficient in LiyFeSO4F. J Electrochem Soc 158:A741–A749CrossRefGoogle Scholar
  5. 5.
    Barpanda P, Chotard J-N, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon J-M (2011) LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries. Angew Chem Int Ed 50:2526–2531CrossRefGoogle Scholar
  6. 6.
    Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10:4123–4127CrossRefGoogle Scholar
  7. 7.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  8. 8.
    Wang H, Forse AC, Griffin JM, Trease NM, Trognko L, Taberna P-L, Simon P, Grey C (2013) In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J Am Chem Soc 135:18968–18980CrossRefGoogle Scholar
  9. 9.
    Forse AC, Griffin JM, Wang H, Trease NM, Presser V, Gogotsi Y, Simon P, Grey C (2013) Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Phys Chem Chem Phys 15:7722–7730CrossRefGoogle Scholar
  10. 10.
    Levi MD, Salitra G, Levy N, Aurbach D, Maier J (2009) Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat Mater 8:872–875CrossRefGoogle Scholar
  11. 11.
    Levi MD, Sigalov S, Salitra G, Elazari R, Aurbach D (2011) Assessing the solvation numbers of electrolytic ions confined in carbon nanopores under dynamic charging conditions. J Phys Chem Lett 2:120–124CrossRefGoogle Scholar
  12. 12.
    Tsai W-Y, Taberna P-L, Simon P (2014) Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J Am Chem Soc 136:8722–8728CrossRefGoogle Scholar
  13. 13.
    Mo Y, Ong SP, Ceder G (2012) First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem Mater 24:15–17CrossRefGoogle Scholar
  14. 14.
    Ong SP, Mo Y, Richards WD, Miara L, Lee HS, Ceder G (2013) Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ Sci 6:148–156CrossRefGoogle Scholar
  15. 15.
    Ramzan M, Lebègue S, Kang TW, Ahuja R (2011) Hybrid density functional calculations and molecular dynamics study of lithium fluorosulphate, a cathode material for lithium-ion batteries. J Phys Chem C 115:2600–2603CrossRefGoogle Scholar
  16. 16.
    Marrocchelli D, Madden PA, Norberg ST, Hull S (2009) Cation composition effects on oxide conductivity in the Zr2Y2O7–Y3NbO7 system. J Phys Condens Matter 21:405403CrossRefGoogle Scholar
  17. 17.
    Marrocchelli D, Madden PA, Norberg ST, Hull S (2011) Structural disorder in doped zirconias, part II: vacancy ordering effects and the conductivity maximum. Chem Mater 23:1365–1373CrossRefGoogle Scholar
  18. 18.
    Norberg ST, Hull S, Ahmed I, Eriksson SG, Marrocchelli D, Madden PA, Li P, Irvine JTS (2011) Structural disorder in doped zirconias, part I: the Zr0.8Sc0.2YxO1.9 (0.0 < x < 0.2) system. Chem Mater 23:1356–1364CrossRefGoogle Scholar
  19. 19.
    Burbano M, Norberg ST, Hull S, Eriksson SG, Marrocchelli D, Madden PA, Watson GW (2012) Oxygen vacancy ordering and the conductivity maximum in Y2O3-doped CeO2. Chem Mater 24:222–229CrossRefGoogle Scholar
  20. 20.
    Burbano M, Nadin S, Marrocchelli D, Salanne M, Watson GW (2014) Ceria co-doping: synergistic or average effect? Phys Chem Chem Phys 16:8320–8331CrossRefGoogle Scholar
  21. 21.
    Madden PA, Heaton RJ, Aguado A, Jahn S (2006) From first-principles to material properties. J Mol Struct THEOCHEM 771:9–18CrossRefGoogle Scholar
  22. 22.
    Becker CA, Tavazza F, Trautt ZT, Buarque de Macedo RA (2013) Considerations for choosing and using force fields and interatomic potentials in materials science and engineering. Curr Opin Solid State Mat Sci 17:277–283CrossRefGoogle Scholar
  23. 23.
    Russo MF Jr, van Duin ACT (2011) Atomistic-scale simulations of chemical reactions: bridging from quantum chemistry to engineering. Nucl Instrum Methods Phys Res Sect B 269:1549–1554CrossRefGoogle Scholar
  24. 24.
    Tang KT, Toennies JP (1984) An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J Chem Phys 80:3726–3741CrossRefGoogle Scholar
  25. 25.
    Aguado A, Madden PA (2003) Ewald summation of electrostatic multipole interactions up to the quadrupolar level. J Chem Phys 119:7471–7483CrossRefGoogle Scholar
  26. 26.
    Reed SK, Lanning OJ, Madden PA (2007) Electrochemical interface between an ionic liquid and a model metallic electrode. J Chem Phys 126:084704CrossRefGoogle Scholar
  27. 27.
    Siepmann JI, Sprik M (1995) Influence of surface-topology and electrostatic potential on water electrode systems. J Chem Phys 102:511–524CrossRefGoogle Scholar
  28. 28.
    Merlet C, Péan C, Rotenberg B, Madden PA, Simon P, Salanne M (2013) Simulating supercapacitors: can we model electrodes as constant charge surfaces? J Phys Chem Lett 4:264–268CrossRefGoogle Scholar
  29. 29.
    Kolafa J (2004) Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules. J Comput Chem 25:335–342CrossRefGoogle Scholar
  30. 30.
    Kühne TD, Krack M, Mohamed FR, Parrinello M (2007) Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys Rev Lett 98:066401CrossRefGoogle Scholar
  31. 31.
    Roy D, Maroncelli M (2010) An improved four-site ionic liquid model. J Phys Chem B 114:12629–12631CrossRefGoogle Scholar
  32. 32.
    Edwards DMF, Madden P, McDonald I (1984) A computer simulation study of the dielectric properties of a model of methyl cyanide. Mol Phys 51:1141–1161CrossRefGoogle Scholar
  33. 33.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  34. 34.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  35. 35.
    Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F (2008) Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater 7:665–671CrossRefGoogle Scholar
  36. 36.
    Sun C, Rajasekhara S, Goodenough JB, Zhou F (2011) Monodisperse porous LiFePO4 microspheres for a high power li-ion battery cathode. J Am Chem Soc 133:2132–2135CrossRefGoogle Scholar
  37. 37.
    Nishimura S-I, Nakamura M, Natsui R, Yamada A (2010) New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. J Am Chem Soc 132:13596–13597CrossRefGoogle Scholar
  38. 38.
    Clark JM, Nishimura S-I, Yamada A, Islam MS (2012) High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. Angew Chem Int Ed 51:13149–13153CrossRefGoogle Scholar
  39. 39.
    Armstrong AR, Lyness C, Panchmatia PM, Islam MS, Bruce PG (2011) The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2. Nat Mater 10:223–229CrossRefGoogle Scholar
  40. 40.
    Eames C, Armstrong AR, Bruce PG, Islam MS (2012) Insights into changes in voltage and structure of Li2FeSiO4 polymorphs for lithium-ion batteries. Chem Mater 24:2155–2161CrossRefGoogle Scholar
  41. 41.
    Recham N, Chotard J-N, Dupont L, Delacourt C, Walker W, Armand M, Tarascon J-M (2010) A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9:68–74CrossRefGoogle Scholar
  42. 42.
    Barpanda P, Ati M, Melot BC, Rousse G, Chotard J-N, Doublet M-L, Sougrati MT, Corr SA, Jumas J-C, Tarascon J-M (2011) A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat Mater 10:772–779CrossRefGoogle Scholar
  43. 43.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686CrossRefGoogle Scholar
  44. 44.
    Malik R, Zhou F, Ceder G (2011) Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat Mater 10:587–590CrossRefGoogle Scholar
  45. 45.
    Armstrong AR, Kuganathan N, Islam MS, Bruce PG (2011) Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc 133:13031–13035CrossRefGoogle Scholar
  46. 46.
    Tripathi R, Gardiner GR, Islam MS, Nazar LF (2011) Alkali-ion conduction paths in LiFeSO4F and NaFeSO4F tavorite-type cathode materials. Chem Mater 23:2278–2284CrossRefGoogle Scholar
  47. 47.
    Castets A, Carlier D, Zhang Y, Boucher F, Marx N, Croguennec L, Menetrier M (2011) Multinuclear NMR and DFT calculations on the LiFePO4·OH and FePO4·H2O homeotypic phases. J Phys Chem C 115:16234–16241CrossRefGoogle Scholar
  48. 48.
    Castets A, Carlier D, Zhang Y, Boucher F, Menetrier M (2012) A DFT-based analysis of the NMR fermi contact shifts in tavorite-like LiMPO4·OH and MPO4·H2O (M = Fe, Mn, V). J Phys Chem C 116:18002–18014CrossRefGoogle Scholar
  49. 49.
    Ben Yahia M, Lemoigno F, Rousse G, Boucher F, Tarascon J-M, Doublet M-L (2012) Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries. Energy Environ Sci 5:9584–9594CrossRefGoogle Scholar
  50. 50.
    Morgan BJ, Watson GW (2010) GGA+ U description of lithium intercalation into anatase TiO2. Phys Rev B 82:144119CrossRefGoogle Scholar
  51. 51.
    Morgan BJ, Madden PA (2012) Lithium intercalation into TiO2(B): a comparison of LDA, GGA, and GGA+ U density functional calculations. Phys Rev B 86:035147CrossRefGoogle Scholar
  52. 52.
    Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085–5092CrossRefGoogle Scholar
  53. 53.
    Salanne M, Siqueira LJA, Seitsonen AP, Madden PA, Kirchner B (2012) From molten salts to room temperature ionic liquids: simulation studies on chloroaluminate systems. Faraday Discuss 154:171–188CrossRefGoogle Scholar
  54. 54.
    Burbano M, Marrocchelli D, Yildiz B, Tuller HL, Norberg ST, Hull S, Madden PA, Watson GW (2011) A dipole polarizable potential for reduced and doped CeO2 obtained from first principles. J Phys Condens Matter 23:255402CrossRefGoogle Scholar
  55. 55.
    Salanne M, Marrocchelli D, Watson GW (2012) Cooperative mechanism for the diffusion of Li+ ions in LiMgSO4F. J Phys Chem C 116:18618–18625CrossRefGoogle Scholar
  56. 56.
    Marrocchelli D, Salanne M, Watson GW (2013) Effects of Li-ion vacancies on the ionic conduction mechanism of LiMgSO4F. Modell Simul Mater Sci Eng 21:074003CrossRefGoogle Scholar
  57. 57.
    Muller RP, Schultz PA (2013) Modelling challenges for battery materials and electrical energy storage. Modell Simul Mater Sci Eng 21:070301CrossRefGoogle Scholar
  58. 58.
    Heaton RJ, Brookes R, Madden PA, Salanne M, Simon C, Turq P (2006) A first-principles description of liquid BeF2 and its mixtures with LiF: 1. Potential development and pure BeF2. J Phys Chem B 110:11454–11460CrossRefGoogle Scholar
  59. 59.
    Salanne M, Simon C, Turq P, Heaton RJ, Madden PA (2006) A first-principles description of liquid BeF2 and its mixtures with LiF: 2. Network formation in LiF-BeF2. J Phys Chem B 110:11461–11467CrossRefGoogle Scholar
  60. 60.
    Marrocchelli D, Salanne M, Madden PA, Simon C, Turq P (2009) The construction of a reliable potential for GeO2 from first principles. Mol Phys 107(4–6):443–452CrossRefGoogle Scholar
  61. 61.
    Marrocchelli D, Salanne M, Madden PA (2010) High-pressure behaviour of GeO2: a simulation study. J Phys Condens Matter 22:152102CrossRefGoogle Scholar
  62. 62.
    Salanne M, Rotenberg B, Simon C, Jahn S, Vuilleumier R, Madden PA (2012) Including many-body effects in models for ionic liquids. Theor Chem Acc 131:1143CrossRefGoogle Scholar
  63. 63.
    Rotenberg B, Salanne M, Simon C, Vuilleumier R (2010) From localized orbitals to material properties: building classical force fields for nonmetallic condensed matter systems. Phys Rev Lett 104:138301CrossRefGoogle Scholar
  64. 64.
    Frenkel D, Smit B (2002) Understanding molecular dynamics, 2nd edn. Academic Press, WalthamGoogle Scholar
  65. 65.
    Chroneos A, Parfitt D, Kilner JA, Grimes RW (2010) Anisotropic oxygen diffusion in tetragonal La2NiO4+δ: molecular dynamics calculations. J Mater Chem 20:266–270CrossRefGoogle Scholar
  66. 66.
    Kushima A, Parfitt D, Chroneos A, Yildiz B, Kilner JA, Grimes RW (2011) Interstitialcy diffusion of oxygen in tetragonal La2CoO4+δ. Phys Chem Chem Phys 13:2242–2249CrossRefGoogle Scholar
  67. 67.
    Panchmatia PM, Orera A, Rees GJ, Smith ME, Hanna JV, Slater PR, Islam MS (2011) Oxygen defects and novel transport mechanisms in apatite ionic conductors: combined 17O NMR and modeling studies. Angew Chem Int Ed 50:9328–9333CrossRefGoogle Scholar
  68. 68.
    Murch GE (1982) The Haven ratio in fast ionic conductors. Solid State Ionics 7:177–198CrossRefGoogle Scholar
  69. 69.
    Castiglione MJ, Madden PA (2001) Fluoride ion disorder and clustering in superionic PbF2. J Phys Condens Matter 13:9963CrossRefGoogle Scholar
  70. 70.
    Sebastian L, Gopalakrishnan J, Piffard Y (2002) Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4. J Mater Chem 12:374–377CrossRefGoogle Scholar
  71. 71.
    Kilner JA (2000) Fast oxygen transport in acceptor doped oxides. Solid State Ionics, 129:13–23. (11th International conference on solid state ionics (SSI-11), Honolulu, Hawaii, 16–21 Nov 1997)Google Scholar
  72. 72.
    Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507CrossRefGoogle Scholar
  73. 73.
    Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2731CrossRefGoogle Scholar
  74. 74.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  75. 75.
    Kornyshev AA (2007) Double-layer in ionic liquids: paradigm change? J Phys Chem B 111:5545–5557CrossRefGoogle Scholar
  76. 76.
    Bazant MZ, Storey BD, Kornyshev AA (2011) Double layer in ionic liquids: overscreening versus crowding. Phys Rev Lett 106:046102CrossRefGoogle Scholar
  77. 77.
    Alam MT, Islam MM, Okajima T, Ohsaka T (2007) Measurements of differential capacitance in room temperature ionic liquid at mercury, glassy carbon and gold electrode interfaces. Electrochem Commun 9:2370–2374CrossRefGoogle Scholar
  78. 78.
    Islam MM, Alam MT, Ohsaka T (2008) Electrical double-layer structure in ionic liquids: a corroboration of the theoretical model by experimental results. J Phys Chem C 112:16568–16574CrossRefGoogle Scholar
  79. 79.
    Islam MM, Alam MT, Okajima T, Ohsaka T (2009) Electrical double layer structure in ionic liquids: an understanding of the unusual capacitance-potential curve at a nonmetallic electrode. J Phys Chem C 113:3386–3389CrossRefGoogle Scholar
  80. 80.
    Alam MT, Islam MM, Okajima T, Ohsaka T (2009) Electrical double layer in mixtures of room-temperature ionic liquids. J Phys Chem C 113:6596–6601CrossRefGoogle Scholar
  81. 81.
    Silva F, Gomes C, Figueiredo M, Costa R, Martins A, Pereira CM (2008) The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface—effect of temperature on the differential capacitance. J Electroanal Chem 622:153–160CrossRefGoogle Scholar
  82. 82.
    Heyes DM, Clarke JHR (1981) Computer-simulation of molten-salt interphases—effect of a rigid boundary and an applied electric-field. J Chem Soc Faraday Trans 2(77):1089–1100CrossRefGoogle Scholar
  83. 83.
    Lanning O, Madden PA (2004) Screening at a charged surface by a molten salt. J Phys Chem B 108:11069–11072CrossRefGoogle Scholar
  84. 84.
    Fedorov MV, Kornyshev AA (2008) Ionic liquid near a charged wall: structure and capacitance of electrical double layer. J Phys Chem B 112:11868–11872CrossRefGoogle Scholar
  85. 85.
    Fedorov MV, Kornyshev AA (2008) Towards understanding the structure and capacitance of electrical double layer in ionic liquids. Electrochim Acta 53:6835–6840CrossRefGoogle Scholar
  86. 86.
    Fedorov MV, Georgi N, Kornyshev AA (2010) Double layer in ionic liquids: the nature of the camel shape of capacitance. Electrochem Commun 12:296–299CrossRefGoogle Scholar
  87. 87.
    Georgi N, Kornyshev AA, Fedorov MV (2010) The anatomy of the double layer and capacitance in ionic liquids with anisotropic ions: electrostriction vs. lattice saturation. J Electroanal Chem 649:261–267CrossRefGoogle Scholar
  88. 88.
    Pounds M, Tazi S, Salanne M, Madden PA (2009) Ion adsorption at a metallic electrode: an ab initio based simulation study. J Phys Condens Matter 21:424109CrossRefGoogle Scholar
  89. 89.
    Tazi S, Salanne M, Simon C, Turq P, Pounds M, Madden PA (2010) Potential-induced ordering transition of the adsorbed layer at the ionic liquid/electrified metal interface. J Phys Chem B 114:8453–8459CrossRefGoogle Scholar
  90. 90.
    Vatamanu J, Borodin O, Smith GD (2010) Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Phys Chem Chem Phys 12:170–182CrossRefGoogle Scholar
  91. 91.
    Kislenko SA, Samoylov IS, Amirov RH (2009) Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF6]. Phys Chem Chem Phys 11:5584–5590CrossRefGoogle Scholar
  92. 92.
    Feng G, Zhang JS, Qiao R (2009) Microstructure and capacitance of the electrical double layers at the interface of ionic liquids and planar electrodes. J Phys Chem C 113(11):4549–4559CrossRefGoogle Scholar
  93. 93.
    Merlet C, Salanne M, Rotenberg B, Madden PA (2011) Imidazolium ionic liquid interfaces with vapor and graphite: interfacial tension and capacitance from coarse-grained molecular simulations. J Phys Chem C 115:16613–16618CrossRefGoogle Scholar
  94. 94.
    Merlet C, Salanne M, Rotenberg B (2012) New coarse-grained models of imidazolium ionic liquids for bulk and interfacial molecular simulations. J Phys Chem C 116:7687–7693CrossRefGoogle Scholar
  95. 95.
    Feng G, Jiang D, Cummings PT (2012) Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces. J Chem Theory Comput 8:1058–1063CrossRefGoogle Scholar
  96. 96.
    Yang L, Fishbine BH, Migliori A, Pratt LR (2009) Molecular simulation of electric double-layer capacitors based on carbon nanotube forests. J Am Chem Soc 131:12373–12376CrossRefGoogle Scholar
  97. 97.
    Shim Y, Kim HJ (2010) Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. ACS Nano 4:2345–2355CrossRefGoogle Scholar
  98. 98.
    Feng GA, Qiao R, Huang JS, Dai S, Sumpter BG, Meunier V (2011) The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Phys Chem Chem Phys 13:1152–1161CrossRefGoogle Scholar
  99. 99.
    Feng G, Li S, Atchison JS, Presser V, Cummings PT (2013) Molecular insights into carbon nanotube supercapacitors: capacitance independent of voltage and temperature. J Phys Chem C 117:9178–9186CrossRefGoogle Scholar
  100. 100.
    Heyes DM, Clarke JHR (1981) Computer simulation of molten-salt interphases. Effect of a rigid boundary and an applied electric field. J Chem Soc Faraday Trans 2(77):1089–1100CrossRefGoogle Scholar
  101. 101.
    Atkin R, Warr GG (2007) Structure in confined room-temperature ionic liquids. J Phys Chem C 111:5162–5168CrossRefGoogle Scholar
  102. 102.
    Hayes E, Warr GG, Atkin R (2010) At the interface: solvation and designing ionic liquids. Phys Chem Chem Phys 12:1709–1723CrossRefGoogle Scholar
  103. 103.
    Atkin R, Borisenko N, Drüschler M, Zein El Abedin S, Endres F, Hayes R, Huber B, Roling B (2011) An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction. Phys Chem Chem Phys 13:6849–6857CrossRefGoogle Scholar
  104. 104.
    Perkin S, Crowhurst L, Niedermeyer H, Welton T, Smith AM, Gosvami NN (2011) Self-assembly in the electrical double layer of ionic liquids. Chem Commun 47:6572–6574CrossRefGoogle Scholar
  105. 105.
    Feng G, Huang J, Sumpter BG, Meunier V, Qiao R (2011) A “counter-charge layer in generalized solvents” framework for electrical double layers in neat and hybrid ionic liquid electrolytes. Phys Chem Chem Phys 13:14723–14734CrossRefGoogle Scholar
  106. 106.
    Merlet C, Rotenberg B, Madden PA, Taberna P-L, Simon P, Gogotsi Y, Salanne M (2012) On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 11:306–310CrossRefGoogle Scholar
  107. 107.
    Merlet C, Péan C, Rotenberg B, Madden PA, Daffos B, Taberna P-L, Simon P, Salanne M (2013) Highly confined ions store charge more efficiently in supercapacitors. Nat Commun 4:2701CrossRefGoogle Scholar
  108. 108.
    Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591–594CrossRefGoogle Scholar
  109. 109.
    Dash R, Chmiola J, Yushin G, Gogotsi Y, Laudisio G, Singer J, Fisher JE, Kucheyev S (2006) Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44:2489–2497CrossRefGoogle Scholar
  110. 110.
    Chmiola J, Largeot C, Taberna P-L, Simon P, Gogotsi Y (2008) Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chem Int Ed 47:3392–3395CrossRefGoogle Scholar
  111. 111.
    Lin R, Huang P, Segalini J, Largeot C, Taberna PL, Chmiola J, Gogotsi Y, Simon P (2009) Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores. Electrochim Acta 54:7025–7032CrossRefGoogle Scholar
  112. 112.
    Palmer JC, Llobet A, Yeon S-H, Fisher JE, Shi Y, Gogotsi Y, Gubbins KE (2010) Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48:1116–1123CrossRefGoogle Scholar
  113. 113.
    Willard AP, Chandler D (2010) Instantaneous liquid interfaces. J Phys Chem B 114:1954–1958CrossRefGoogle Scholar
  114. 114.
    Merlet C (2013) Modélisation de l’adsorption des ions dans les carbones nanoporeuxGoogle Scholar
  115. 115.
    Ania CO, Pernak J, Stefaniak F, Raymundo-Piñero E, Béguin F (2009) Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors. Carbon 47:3158–3166CrossRefGoogle Scholar
  116. 116.
    Ohkubo T, Konishi T, Hattori Y, Kanoh H, Fujikawa T, Kaneko K (2002) Restricted hydration structures of Rb and Br ions confined in slit-shaped carbon nanospace. J Am Chem Soc 124:11860–11861CrossRefGoogle Scholar
  117. 117.
    Péan C, Merlet C, Rotenberg B, Madden PA, Taberna P-L, Daffos B, Salanne M, Simon P (2014) On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8:1576–1583CrossRefGoogle Scholar
  118. 118.
    Pinilla C, Del Pópolo MG, Kohanoff J, Lynden-Bell RM (2007) Polarization relaxation in an ionic liquid confined between electrified walls. J Phys Chem B 111:4877–4884CrossRefGoogle Scholar
  119. 119.
    Vatamanu J, Borodin O, Smith GD (2011) Molecular simulations of the electric double layer structure, differential capacitance, and charging kinetics for N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide at graphite electrodes. J Phys Chem B 115:3073–3084CrossRefGoogle Scholar
  120. 120.
    Kondrat S, Kornyshev AA (2013) Charging dynamics and optimization of nano-porous supercapacitors. J Phys Chem C 117:12399–12406CrossRefGoogle Scholar
  121. 121.
    Kondrat S, Wu P, Qiao R, Kornyshev AA (2014) Accelerating charging dynamics in subnanometre pores. Nat Mater 13:387–393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of ChemistryUniversity of CambridgeCambridgeUK
  3. 3.Sorbonne UniversityUPMC Univ Paris 06ParisFrance
  4. 4.Réseau sur le Stockage Electrochimique de l’Energie (RS2E)Amiens CedexFrance

Personalised recommendations