Multi-scale Simulation Study of Pt-Alloys Degradation for Fuel Cells Applications

Part of the Green Energy and Technology book series (GREEN)


Low-temperature fuel cells are one of the most promising systems for the transformation of fuels in an efficient, silent, and environmentally friendly manner. The requirements for the electrocatalyst are essentially three: the highest possible catalytic activity and the longest life cycle at the lowest cost. Sometimes, we can obtain one at expenses of the other. In this chapter, we review the simulation methods used in our group to study the degradation of catalysts for fuel cell applications: Density functional theory (DFT), classical molecular dynamics (CMD), Ab initio molecular dynamics (AIMD), and kinetic Monte Carlo (KMC). In the first part, we employ DFT, AIMD, and CMD to address the importance of the oxygen concentration on the surface of the catalysts and its influence on the “buckling” of Pt atoms and the role of the subsurface atoms. Then we analyze the temporal evolution of shape and composition of Pt/Ni nanoalloys by KMC simulations at various overall compositions and applied voltages. Finally, using DFT we study the effect that the presence of oxygen in the subsurface has on the buckling of Pt skin/PtCo structures by varying the oxygen coverage factor. The different methods and time scales used for the simulations permit us to fathom the factors governing the stability of electrocatalysts for fuel cells applications.


Adsorption Energy Oxygen Reduction Reaction Membrane Electrode Assembly Classical Molecular Dynamic Kinetic Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Song CS (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32CrossRefGoogle Scholar
  2. 2.
    Specht M, Staiss F, Bandi A, Weimer T (1998) Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline-energetic and economic aspects. Int J Hydrogen Energy 23:387–396CrossRefGoogle Scholar
  3. 3.
    Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106:11970–11979CrossRefGoogle Scholar
  4. 4.
    Xiong LF, Manthiram A (2004) Influence of atomic ordering on the electrocatalytic activity of Pt-Co alloys in alkaline electrolyte and proton exchange membrane fuel cells. J Mater Chem 14:1454–1460CrossRefGoogle Scholar
  5. 5.
    Vinayan BP, Nagar R, Rajalakshmi N, Ramaprabhu S (2012) Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv Funct Mater 22:3519–3526CrossRefGoogle Scholar
  6. 6.
    Cui C, Gan L, Li H-H, Yu S-H, Heggen M, Strasser P (2012) Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett 12:5885–5889CrossRefGoogle Scholar
  7. 7.
    Loukrakpam R, Luo J, He T, Chen Y, Xu Z, Njoki PN, Wanjala BN, Fang B, Mott D, Yin J, Klar J, Powell B, Zhong C-J (2011) Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: an assessment of the structural and electrocatalytic properties. J Phys Chem C 115:1682–1694CrossRefGoogle Scholar
  8. 8.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35CrossRefGoogle Scholar
  9. 9.
    Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL (2005) Durability of PEFCs at high humidity conditions. J Electrochem Soc 152:A104–A113CrossRefGoogle Scholar
  10. 10.
    Ramos-Sanchez G, Solorza-Feria O (2010) Synthesis and characterization of Pd0.5NixSe(0.5-x) electrocatalysts for oxygen reduction reaction in acid media. Int J Hydrogen Energy 35:12105–12110CrossRefGoogle Scholar
  11. 11.
    Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA (2006) PEM fuel cell electrocatalyst durability measurements. J Power Sources 163:76–81CrossRefGoogle Scholar
  12. 12.
    Iojoiu C, Guilminot E, Maillard F, Chatenet M, Sanchez JY, Claude E, Rossinot E (2007) Membrane and active layer degradation following PEMFC steady-state operation—II. Influence of Ptz+ on membrane properties. J Electrochem Soc 154:B1115–B1120CrossRefGoogle Scholar
  13. 13.
    Dubau L, Durst J, Maillard F, Guetaz L, Chatenet M, Andre J, Rossinot E (2011) Further insights into the durability of Pt3Co/C electrocatalysts: formation of “hollow” Pt nanoparticles induced by the Kirkendall effect. Electrochim Acta 56:10658–10667CrossRefGoogle Scholar
  14. 14.
    Ferreira PJ, Ia OGJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton-exchange membrane fuel cells. J Electrochem Soc 152:A2256–A2271CrossRefGoogle Scholar
  15. 15.
    Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46:285–305CrossRefGoogle Scholar
  16. 16.
    Ramos-Sanchez G, Balbuena PB (2013) Interactions of platinum clusters with a graphite substrate. Phys Chem Chem Phys 15:11950–11959CrossRefGoogle Scholar
  17. 17.
    Ma J, Habrioux A, Morais C, Lewera A, Vogel W, Verde-Gomez Y, Ramos-Sanchez G, Balbuena PB, Alonso-Vante N (2013) Spectroelectrochemical probing of the strong interaction between platinum nanoparticles and graphitic domains of carbon. ACS Catal 3:1940–1950CrossRefGoogle Scholar
  18. 18.
    Franco AA, Tembely M (2007) Transient multiscale modeling of aging mechanisms in a PEFC cathode. J Electrochem Soc 154:B712–B723CrossRefGoogle Scholar
  19. 19.
    Callejas-Tovar R, Balbuena PB (2011) Molecular dynamics simulations of surface oxide-water interactions on Pt(111) and Pt/PtCo/Pt3Co(111). Phys Chem Chem Phys 13:20461–20470CrossRefGoogle Scholar
  20. 20.
    McMillan N, Lele T, Snively C, Lauterbach J (2005) Subsurface oxygen formation on Pt(100): experiments and modeling. Catal Today 105:244–253CrossRefGoogle Scholar
  21. 21.
    Walker AV, Klotzer B, King DA (2000) The formation of subsurface oxygen on Pt{110} (1 × 2) from molecular-beam-generated O-2 (1)Delta(g). J Chem Phys 112:8631–8636CrossRefGoogle Scholar
  22. 22.
    Over H, Seitsonen AP (2002) Oxidation of metal surfaces. Science 297:2003–2005CrossRefGoogle Scholar
  23. 23.
    Gu Z, Balbuena PB (2007) Absorption of atomic oxygen into subsurfaces of Pt(100) and Pt(111): density functional theory study. J Phys Chem C 111:9877–9883CrossRefGoogle Scholar
  24. 24.
    Gu Z, Balbuena PB (2007) Chemical environment effects on the atomic oxygen absorption into Pt(111) subsurfaces. J Phys Chem C 111:17388–17396CrossRefGoogle Scholar
  25. 25.
    Gu Z, Balbuena PB (2008) Atomic oxygen absorption into Pt-based alloy subsurfaces. J Phys Chem C 112:5057–5065CrossRefGoogle Scholar
  26. 26.
    Allen MP, Tildesley DJ (1990) Computer simulation of liquids. Oxford University Press, OxfordzbMATHGoogle Scholar
  27. 27.
    Koper MTM, Jansen APJ, vanSanten RA, Lukkien JJ, Hilbers PAJ (1998) Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum. J Chem Phys 109:6051–6062CrossRefGoogle Scholar
  28. 28.
    Koper MTM, Lukkien JJ, Jansen APJ, Van Santen RA (1999) Lattice gas model for CO electrooxidation on Pt-Ru bimetallic surfaces. J Phys Chem B 103:5522–5529CrossRefGoogle Scholar
  29. 29.
    Lukkien J, Segers JPL, Hilbers PAJ, Gelten RJ, Jansen APJ (1998) Efficient Monte Carlo methods for the simulation of catalytic surface reactions. Phys Rev E 58:2598–2610CrossRefGoogle Scholar
  30. 30.
    Mainardi DS, Calvo SR, Jansen APJ, Lukkien JJ, Balbuena PB (2003) Dynamic Monte Carlo simulations of O2 adsorption and reaction on Pt(111). Chem Phys Lett 382:553–560CrossRefGoogle Scholar
  31. 31.
    Van Gelten RJ, Jansen APJ, Van Santen RA, Lukkien JJ, Segers JPL, Hilbergs PAJ (1998) Monte Carlo simulations of a surface reaction model showing spatio-temporal pattern formations and oscillations. J Chem Phys 108:5921–5934CrossRefGoogle Scholar
  32. 32.
    Voter AF (2007) Introduction To The kinetic Monte Carlo method, vol 235Google Scholar
  33. 33.
    Callejas-Tovar R, Diaz CA, Hoz JMMdI, Balbuena PB (2013) Dealloying of platinum-based alloy catalysts: kinetic Monte Carlo simulations. Electrochim Acta 101:326–333CrossRefGoogle Scholar
  34. 34.
    Kirkendall E, Thomassen L, Uethegrove C (1939) Rates of diffusion copper and zinc in alpha brass. Trans Am Inst Mining Metall Eng 133:186–203Google Scholar
  35. 35.
    Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453CrossRefGoogle Scholar
  36. 36.
    Holby EF, Greeley J, Morgan D (2012) Thermodynamics and hysteresis of oxide formation and removal on platinum (111) surfaces. J Phys Chem C 116:9942–9946CrossRefGoogle Scholar
  37. 37.
    Wakisaka M, Asizawa S, Uchida H, Watanabe M (2010) In situ STM observation of morphological changes of the Pt(111) electrode surface during potential cycling in 10 mM HF solution. Phys Chem Chem Phys 12:4184–4190CrossRefGoogle Scholar
  38. 38.
    Hirunsit P, Balbuena PB (2009) Surface atomic distribution and water adsorption on PtCo alloys. Surf Sci 603:911–919Google Scholar
  39. 39.
    Pokhmurskii V, Korniy S, Kopylets V (2011) Computer simulation of binary platinum-cobalt nanoclusters interaction with oxygen. J Cluster Sci 22:449–458CrossRefGoogle Scholar
  40. 40.
    Yang ZX, Yu XH, Ma DW (2009) Adsorption and diffusion of oxygen atom on Pt3Ni(111) surface with Pt-skin. Acta Phys Chim Sin 25:2329–2335Google Scholar
  41. 41.
    Leisenberger FP, Koller G, Sock M, Surnev S, Ramsey MG, Netzer FP, Klotzer B, Hayek K (2000) Surface and subsurface oxygen on Pd(111). Surf Sci 445:380–393CrossRefGoogle Scholar
  42. 42.
    Hammer B, Hansen LB, Norskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413–7421CrossRefGoogle Scholar
  43. 43.
    Hirunsit P, Balbuena PB (2009) Effects of water and electric field on atomic oxygen adsorption on PtCo alloys. Surf Sci 603:3239–3248CrossRefGoogle Scholar
  44. 44.
    Tang W, Henkelman G (2009) Charge redistribution in core-shell nanoparticles to promote oxygen reduction. J Chem Phys 130Google Scholar
  45. 45.
    Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations