Atomistic Modeling of Electrode Materials for Li-Ion Batteries: From Bulk to Interfaces

Part of the Green Energy and Technology book series (GREEN)


In the field of energy materials, the computational modeling of electrochemical devices such as fuel cells, rechargeable batteries, photovoltaic cells, or photo-batteries that combine energy conversion and storage represent a great challenge for theoreticians. Given the wide variety of issues related to the modeling of each of these devices, this chapter is restricted to the study of rechargeable batteries (accumulators) and, more particularly, Li-ion batteries. The aim of this chapter is to emphasize some of the key problems related to the theoretical and computational treatment of these complex systems and to present some of the state-of-the-art computational techniques and methodologies being developed in this area to meet one of the greatest challenges of our century in terms of energy storage.


Density Functional Theory Configuration Entropy Normal Hydrogen Electrode Cluster Variation Method Electrochemical Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Plett GL (2004)Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2. Modeling and identification. J Power Sources 134(2):262–276Google Scholar
  2. 2.
    Doyle M, Newman J (1995) Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases. J Power Sources 54(1):46–51Google Scholar
  3. 3.
    Darling R, Newman J (1998) Modeling Side Reactions in Composite LiyMn2O4 Electrodes. J Electrochem Soc 145(3):990–998Google Scholar
  4. 4.
    Ramadass P, Haran B, Gomadam PM, White R, Popov BN (2004) Development of first principles capacity fade model for Li-Ion cells. J Electrochem Soc 151(2):A196–A203Google Scholar
  5. 5.
    Safari M, Morcrette M, Teyssot A, Delacourt C (2009) Multimodal physics-based aging model for life prediction of Li-Ion batteries. J Electrochem Soc 156(3):A145–A153Google Scholar
  6. 6.
    Safari M, Delacourt C (2011) Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence. J Electrochem Soc 158(2):A63–A174Google Scholar
  7. 7.
    Young WM, Elcock EW (1966) Monte Carlo studies of vacancy migration in binary ordered alloys: IProc Phys Soc 89:735–746Google Scholar
  8. 8.
    Fowler R, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge, p 7Google Scholar
  9. 9.
    Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics: foundations, applications, frontiers. Springer, Berlin. ISBN: 978-3-540-74252-4Google Scholar
  10. 10.
    Karma A, Rappel W-J (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57(4):4323–4349Google Scholar
  11. 11.
    Franco AA, Schott P, Jallut C, Maschke B (2007) A multi-scale dynamic mechanistic model for the transient analysis of PEFCs. Fuel Cells 7(2):99–117Google Scholar
  12. 12.
    Bazant M (2013) Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc Chem Res 46(5):1144–1160Google Scholar
  13. 13.
    Franco AA (2013) Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv 3:13027–13058Google Scholar
  14. 14.
    Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. J Electrochem Soc 144:1609–1613Google Scholar
  15. 15.
    Saubanère M, Ben Yahia M, Lebègue S, Doublet M-L (2014) An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries. Nat Commun 5:5559Google Scholar
  16. 16.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3):B864–871Google Scholar
  17. 17.
    Kohn W, Sham LJ (1965) Self-Consistent equations including exchange and correlation Effects. Phys Rev 140(4):A1133–A1138Google Scholar
  18. 18.
    von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. J Phys C: Solid State Phys 5(13):1629–1642Google Scholar
  19. 19.
    Wang Y, Perdew JP (1991) Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B 44(24):13298–13307Google Scholar
  20. 20.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249Google Scholar
  21. 21.
    Becke AD (1993) Density functional thermochemistry III. The role of exact exchange. J Chem Phys 98(7):5648–5652Google Scholar
  22. 22.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985Google Scholar
  23. 23.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110(13):6158–6170Google Scholar
  24. 24.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118(18):8207–8215Google Scholar
  25. 25.
    Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954Google Scholar
  26. 26.
    Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulator. Phys Rev B 52(8):R5467–R5470Google Scholar
  27. 27.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B 57(3):1505–1509Google Scholar
  28. 28.
    Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97(10):103001-1-4Google Scholar
  29. 29.
    Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1365Google Scholar
  30. 30.
    Feynman RP (1939) Forces in Molecules. Phys Rev 56(4):340–343Google Scholar
  31. 31.
    Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J Chem Phys 124(24):244704–1–15Google Scholar
  32. 32.
    Ceder G, Morgan D, Fischer C, Tibbetts K, Curtarolo S (2006) Data-Mining-Driven quantum mechanics for the prediction of structure. MRS Bull 31:981–985Google Scholar
  33. 33.
    See the Material Project website:
  34. 34.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680Google Scholar
  35. 35.
    Wales D, Doye J (1997) Global Optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 Atoms. J Phys Chem A 101(28):5111–5118Google Scholar
  36. 36.
    Grotendorst J (ed) (2000) Modern methods and algorithms of quantum chemistry. John von Neumann Institute for Computing, Jülich, NIC Series, Vol 1, pp 301–449. ISBN 3-00-005618-1Google Scholar
  37. 37.
    Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55(16):10355–10368Google Scholar
  38. 38.
    Ben Yahia M, Lemoigno F, Beuvier T, Filhol JS, Richard-Plouet M, Brohan L, Doublet ML (2009) Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations. J Chem Phys 130(20):204501-1-11Google Scholar
  39. 39.
    Kikuchi R (1951) A Theory of Cooperative Phenomena. Phys Rev 81(6):988–1003Google Scholar
  40. 40.
    Sanchez JM, Ducastelle F, Gratias D (1984) Generalized cluster description of multicomponent systems Physica 128:334–350Google Scholar
  41. 41.
    Persson K, Hinuma Y, Meng YS, Van der Ven A, Ceder G (2010) Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations. Phys Rev B 82(12):125416-1-9Google Scholar
  42. 42.
    Van der Ven A, Aydinol MK, Ceder G, Kresse G, Hafner J (1998) First-principles investigation of phase stability in LixCoO2. Phys Rev B 58(6):2975–2987Google Scholar
  43. 43.
    Van der Ven A, Aydinol MK, Ceder G (1998) First Principles evidence for stage ordering in LixCoO2. J Electrochem Soc 145(6):2149–2155Google Scholar
  44. 44.
    Van der Ven A, Ceder G, Asta M, Tepesch PD (2001) First-principles theory of ionic diffusion with nondilute carriers. Phys Rev B 64(18):184307-1-17Google Scholar
  45. 45.
    Mueller T, Ceder G (2009) Bayesian approach to cluster expansions. Phys Rev B 80(2):024103-1-13Google Scholar
  46. 46.
    Bethe HA (1935) Statistical theory of superlattices. Proc Roy Soc London A 150:552–575Google Scholar
  47. 47.
    Filhol J-S, Combelles C, Yazami R, Doublet M-L (2008) Phase diagrams for systems with low free energy variation: A coupled theory/experiments method applied to Li-graphite. J Phys Chem C 112(10):3982–3988Google Scholar
  48. 48.
    Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond Intercalation-Based Li-Ion Batteries: The State of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192Google Scholar
  49. 49.
    Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B 73(19):195107-1-6Google Scholar
  50. 50.
    Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82(7):075122-1-11Google Scholar
  51. 51.
    Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys Rev B 70(23):235121–1–8Google Scholar
  52. 52.
    Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Phosphates as Lithium-Ion Battery Cathodes: An evaluation based on high-throughput ab Initio calculations. Chem Mater 23:3495–3508Google Scholar
  53. 53.
    Ben Yahia M, Lemoigno F, Rousse G, Boucher F, Tarascon JM, Doublet ML (2012) Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries. Energy Environ Sci 5:9584–9594Google Scholar
  54. 54.
    Frayret C, Villesuzanne A, Spaldin N, Bousquet E, Chotard J-N, Recham N, Tarascon J-M (2010) LiMSO4F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope. Phys Chem Chem Phys 12:15512–15522Google Scholar
  55. 55.
    Jain A, Hautier G, Ping Ong S, Moore CJ, Fischer CC, Persson KA, Ceder G (2011) Formation enthalpies by mixing GGA and GGA + U calculations. Phys Rev B 84(4):045115-1-10Google Scholar
  56. 56.
    Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G (2011) Data Mined ionic substitutions for the discovery of new compounds. Inorg Chem 50(2):656–663Google Scholar
  57. 57.
    Mueller T, Hautier G, Jain A, Ceder G (2011) Evaluation of tavorite-structured cathode materials for lithium-Ion batteries using high-throughput computing  Chem Mater 23(17):3854–3862Google Scholar
  58. 58.
    Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations Comp Mater Sci 50:2295–2310Google Scholar
  59. 59.
    Ping Ong P, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V, Ceder G (2013) Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comp Mater Sci 68:314–319Google Scholar
  60. 60.
    Van der Ven A, Ceder G (2005) Vacancies in ordered and disordered binary alloys treated with the cluster expansion. Phys Rev B 71(5):054102-1-7Google Scholar
  61. 61.
    Bergerhoff G, Hundt R, Sievers R, Brown ID (1983) The inorganic crystal structure data base. J Chem Inf Comput Sci 23:66–69Google Scholar
  62. 62.
    Belsky A, Hellenbrandt M, Karen VL, Luksch P (2002) New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr A 58:364–369Google Scholar
  63. 63.
    Grazulis S et al (2009) Crystallography open database an open-access collection of crystal structures. J Appl Crystallogr 42:726–729Google Scholar
  64. 64.
    Downs RT, Hall-Wallace M (2003) The american mineralogist crystal structure database. Am Mineral 88:247–250Google Scholar
  65. 65.
    Eyring H (1935) The Activated complex in chemical reactions. J Chem Phys 3:107–115Google Scholar
  66. 66.
    Laidler K, King C (1983) Development of transition-state theory. J Phys Chem 87(15):2657–2664Google Scholar
  67. 67.
    Henkelman G, Jóhannesson G, Jónsson H (2000) Methods for finding saddle points and minimum energy paths. In: Schwartz SD (ed) Progress on theoretical chemistry and physics. Kluwer Academic Publishers, pp 269–300Google Scholar
  68. 68.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904Google Scholar
  69. 69.
    Yan X, Gouissem A, Sharma P (2015) Atomistic insights into Li-ion diffusion in amorphous silicon. Mech Mater. doi: 10.1016/j.mechmat.2015.04.001 Google Scholar
  70. 70.
    Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10(10):4123–4127Google Scholar
  71. 71.
    Arora P, White RE, Doyle M (1998) Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. J Electrochem Soc 145(10):3647–3667Google Scholar
  72. 72.
    Vetter J, Novák P, Wagner MR, Veit C, Möller K-C, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281Google Scholar
  73. 73.
    Christensen J, Newman J (2005) Cyclable lithium and capacity loss in Li-Ion cells. J Electrochem Soc 152(4):A818–830Google Scholar
  74. 74.
    Schmickler W, Santos E (eds) (2010) Interfacial electrochemistry, 2nd edn. Springer, BerlinGoogle Scholar
  75. 75.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a Fuel-cell cathode. J Phys Chem B 108(46):17886–17892Google Scholar
  76. 76.
    Lozovoi AY, Alavi A, Kohanoff J, Lynden-Bell RM (2001) Ab initio simulation of charged slabs at constant chemical potential. J Chem Phys 115(4):1661–1669Google Scholar
  77. 77.
    Filhol J-S, Neurock M (2006) Angew Chem Int Ed Elucidation of the Electrochemical Activation of Water over Pd by First Principles 45(3):402–406Google Scholar
  78. 78.
    Filhol J-S, Bocquet M-L (2007) Charge control of the water monolayer/Pd interface Chem. Phys Lett 438(4–6):203–207Google Scholar
  79. 79.
    Taylor CD, Wasileski SA, Filhol J-S, Neurock M (2006) First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys Rev B 73(16):165402–1–16Google Scholar
  80. 80.
    Mamatkoulov M, Filhol J-S (2011) An ab initio study of electrochemical vs. electromechanical properties: the case of CO adsorbed on a Pt (111) surface. Phys Chem Chem Phys 13(17):7675–7684Google Scholar
  81. 81.
    Filhol J-S, Doublet M-L (2013) An ab initio study of surface electrochemical disproportionation: the case of a water monolayer adsorbed on a Pd (111) surface Catal Today 202:87–97Google Scholar
  82. 82.
    Lespes N, Filhol J-S (2015) Using the electrochemical dimension to build water/Ru (0001) phase diagram. Surf Sci 631:8–16Google Scholar
  83. 83.
    Dalverny A-L, Filhol J-S, Doublet M-L (2011) Interface Electrochemistry in Conversion Reactions for Li-Ion Batteries. J Mat Chem 21:10134–10142Google Scholar
  84. 84.
    Lespes N, Filhol J-S (2015) Using Implicit Solvent in Ab Initio Electrochemical Modeling: Investigating Li+/Li Electrochemistry at a Li/Solvent Interface. J Comp Theo Chem. 11(7):3375–3382 doi: 10.1021/acs.jctc.5b00170 Google Scholar
  85. 85.
    Ando K, Hynes JT (1997) Molecular mechanism of Hcl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations. J Phys Chem B 101(49):10464–10478Google Scholar
  86. 86.
    Del Popolo MG, Lynden-Bell RM, Kohanoff J (2005) Ab initio molecular dynamics simulation of a room temperature ionic liquid. J Phys Chem B 109(12):5895–5902  Google Scholar
  87. 87.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093Google Scholar
  88. 88.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-Pcm solvation model. J Comput Chem 24(6):669–681Google Scholar
  89. 89.
    Jinnouchi R, Anderson AB (2008) Electronic structure calculations of liquid-solid interfaces: combination of density functional theory and modified Poisson-Boltzmann theory. Phys Rev B 77(24):245417-1-18Google Scholar
  90. 90.
    Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136(6):064102-1-20Google Scholar
  91. 91.
    Steinmann S, Michel C, Schwiedernoch R, Filhol J-S, Sautet P (2015) Modeling the HCOOH/CO2 Electrocatalytic Reaction, When Details Are Key. Chem Phys Chem. 16(11):2307–2311. doi: 10.1002/cphc.201500187 Google Scholar
  92. 92.
    Filhol J-S, Doublet M-L (2014) Conceptual surface electrochemistry and new redox descriptors. J Phys Chem C 118(33):19023–19031Google Scholar
  93. 93.
    Khatib R, Dalverny A-L, saubanère M, Gaberscek M, Doublet ML (2013) Origin of the voltage hysteresis in the CoP conversion material for Li-Ion batteries. J Phys Chem C 117:837–849Google Scholar
  94. 94.
    Meggiolaro D, Gigli G, Paolone A, Reale P, Doublet M-L, Brutti S (2015) Origin of the voltage hysteresis of MgH 2 electrodes in Lithium. J Phys Chem C 119:17044–17052Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Insitut Charles GERHARDTCNRS and Université de MontpellierMontpellierFrance

Personalised recommendations