Skip to main content

Extensions to New Topics

  • Chapter
  • First Online:
  • 2280 Accesses

Part of the book series: Simulation Foundations, Methods and Applications ((SFMA))

Abstract

The field of multiphysics simulation is rapidly evolving due to continual increases in computing power and the multidisciplinary nature of engineering today. In this final chapter of the book, we collect our thoughts on how the numerical examples provided in this text may be extended to emerging ideas (or topics that have received limited attention) and that make use of state-of-the-art computational tools and optimization algorithms. While many of the case studies provided throughout this book incorporated two physical processes, only one example in Chap. 5 was focused on the simultaneous optimization of a system subject to three distinctly separate, yet coupled, physical phenomena. Here, we set forth a greater number of ideas related to these complex systems and leave it to the reader to explore them on their own. The relevance of such extensions is that most electromechanical applications require the tight integration and handling of more than two physical processes in three dimensions, are highly constrained, and involve specific interface considerations. Thus, topics including the scaling-up of systems, treatment of surfaces and interfaces, and the constraint of systems for manufacturability are covered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip O 47:493–505. doi:10.1007/s00158-012-0869-2

    Article  MATH  MathSciNet  Google Scholar 

  2. Azernikov S, Fischer A (2004) Efficient surface reconstruction method for distributed CAD. Comput Aided Des 36:799–808. doi:10.1016/j.cad.2003.09.006

    Article  Google Scholar 

  3. Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Baerentzen JA, (2014) Topology optimization using an explicit interface representation. Struct Multidiscip O 49:387–399. doi:10.1007/s00158-013-0983-9

  4. Darveaux R (2000) Effect of simulation methodology on solder joint crack growth correlation. In: Proceedings of the 50th electronic components and technology conference, Las Vegas, 21–24 May 2000. doi:10.1109/ECTC.2000.853299

  5. Dedè L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Method E 19:427–465. doi:10.1007/s11831-012-9075-z

    Article  Google Scholar 

  6. Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip O 36:329–345. doi:10.1007/s00158-007-0190-7

    Article  MATH  MathSciNet  Google Scholar 

  7. Fischer A (2011) Engineering-oriented geometry methods for modeling and analyzing scanned data. J Comput Inf Sci Eng 11:021002. doi:10.1115/1.3593415

    Article  Google Scholar 

  8. Gain A (2013) Polytope-based topology optimization using a mimetic-inspired method. Dissertation, University of Illinois at Urbana-Champaign

    Google Scholar 

  9. Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61:238–254. doi:10.1002/nme.1064

    Article  MATH  Google Scholar 

  10. Haslinger J, Kočvara M, Leugering G, Stingl M (2010) Multidisciplinary free material optimization. SIAM J Appl Math 70:2709–2728. doi:10.1137/090774446

    Article  MATH  MathSciNet  Google Scholar 

  11. Jansen M, Lazarov BS, Schevenels M, Sigmund O (2013) On the similarities between micro/nano lithography and topology optimization projection methods. In: 10th world congress on structural and multidisciplinary optimization, Orlando, 19–24 May 2013

    Google Scholar 

  12. Lee J, Nomura T, Dede EM (2012) Heat flow control in thermo-magnetic convective systems using engineered magnetic fields. Appl Phys Lett 101:123507. doi:10.1063/1.4754119

    Article  Google Scholar 

  13. Lee J, Yoon SW (2012) Topology design optimization of electromagnetic vibration energy harvester to maximize power output. J Magn 18:283–288. doi:10.4283/JMAG.2013.18.3.283

    Article  Google Scholar 

  14. Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley, Indianapolis

    Google Scholar 

  15. Malone E, Lipson H (2008) Multi-material freeform fabrication of active systems. In: Proceedings of the ASME 2008 9th biennial conference on engineering systems design and analysis, Haifa, 7–9 July 2008. doi:10.1115/ESDA2008-59313

  16. Noh JY, Yoon GH (2012) Topology optimization of piezoelectric energy harvesting devices considering static and harmonic dynamic loads. Adv Eng Softw 53:45–60. doi:10.1016/j.advengsoft.2012.07.008

    Article  Google Scholar 

  17. Nomura T, Dede EM, Lee J, Yamasaki S, Matsumori T, Kawamoto A, Kikuchi N (2014) General topology optimization method with continuous and discrete orientation design using isoparametric projection (submitted)

    Google Scholar 

  18. Ohkado M, Nomura T, Matsumori T, Kawamoto A, Fujikawa H, Sato K, Yamasaki S, Nishiwaki S (2011) Structural optimization of SPPs color filter using a level set-based topology optimization method incorporating the ALE method. In: 9th world congress on structural and multidisciplinary optimization, Shizuoka, 13–17 June 2011

    Google Scholar 

  19. Ohkado M, Nomura T, Miura A, Fujikawa H, Ikeda N, Sugimoto Y, Nishiwaki S (2013) Structural optimization of metallic infrared filters based on extraordinary optical transmission. T MRS Jap 38:167–170. doi:10.14723/tmrsj.38.167

    Google Scholar 

  20. Ozaki T, Nomura T, Fujitsuka N, Shimaoka K, Akashi T (2013) Topology optimization using multistep mapping from 2D photomask to 3D structure for designing reinforcing rib. Sensors Actuat A-Phys (in press). doi:10.1016/j.sna.2013.08.033

  21. Qian X (2013) Topology optimization in B-spline space. Comput Method Appl M 265:15–35. doi:10.1016/j.cma.2013.06.001

    Article  MATH  Google Scholar 

  22. Qian X, Sigmund O (2013) Topological design of electromechanical actuators with robustness toward over- and under-etching. Comput Method Appl M 253:237–251. doi:10.1016/j.cma.2012.08.020

    Article  MathSciNet  Google Scholar 

  23. Rangarajan R, Lew AJ (2012) Universal meshes: a new paradigm for computing with nonconforming triangulations. http://arxiv.org/abs/1201.4903v1. Accessed 19 March 2014

  24. Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Method Appl M 199:3270–3296. doi:10.1016/j.cma.2010.06.033

    Article  MATH  MathSciNet  Google Scholar 

  25. Sigmund O (2001) Design of multiphysics actuators using topology optimization-Part I: one-material structures. Comput Method Appl M 190:6577–6604. doi:10.1016/S0045-7825(01)00251-1

  26. Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25:227–239. doi:10.1007/s10409-009-0240-z

    Article  MATH  Google Scholar 

  27. van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip O 48:437–472. doi:10.1007/s00158-013-0912-y

    Article  Google Scholar 

  28. Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Meth Eng 87:844–868. doi:10.1002/nme.3135

    Article  MATH  MathSciNet  Google Scholar 

  29. Ye H, Lin M, Basaran C (2002) Failure modes and FEM analysis of power electronic packaging. Finite Elem Anal Des 38:601–612. doi:10.1016/S0168-874X(01)00094-4

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan M. Dede .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Dede, E.M., Lee, J., Nomura, T. (2014). Extensions to New Topics. In: Multiphysics Simulation. Simulation Foundations, Methods and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-5640-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5640-6_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5639-0

  • Online ISBN: 978-1-4471-5640-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics