Advertisement

Optimization Methods for Electromechanical Systems

  • Ercan M. DedeEmail author
  • Jaewook Lee
  • Tsuyoshi Nomura
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

Optimization methods for electromechanical systems are covered with a special emphasis on structural optimization for multiphysics systems. Topology optimization as a material distribution problem is explained in the first section through two basic single physics numerical examples. These initial examples serve to illustrate the optimization process for relatively simple physical systems and provide an opportunity to discuss the computational challenges associated with the method. As a variation on this isotropic material distribution approach to structural design, level set techniques for the topological design of structures are then introduced due to their recent growth as a related research field. The second section of this chapter is then focused on more traditional parametric size analysis/optimization techniques. These methods are well established and can play an important role in the synthesis of design concepts attained through structural topology optimization. A brief explanation of parametric size analysis is provided including a schematic of a representative structural size optimization example for illustrative purposes.

Keywords

Topology Optimization Design Domain Solid Isotropic Material With Penalization Structural Topology Optimization Single Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andreasen CS, Gersborg AR, Sigmund O (2008) Topology optimization for microfluidic mixers. Int J Numer Meth Fl 61:498–513. doi: 10.1002/fld.1964 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale Stokes flow problems. Struct Multidiscip O 35:175–180. doi: 10.1007/s00158-007-0128-0
  3. 3.
    Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Method Appl M 71:197–224. doi: 10.1016/0045-7825(88)90086-2
  4. 4.
    Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654. doi: 10.1007/s004190050248
  5. 5.
    Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, 2nd edn. Springer, BerlinGoogle Scholar
  6. 6.
    Borvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Meth Fl 41:77–107. doi: 10.1002/fld.426 CrossRefGoogle Scholar
  7. 7.
    Chen Y, Zhou S, Li Q (2010) Multiobjective topology optimization for finite periodic structures. Comput Struct 88:806–811. doi: 10.1016/j.compstruc.2009.10.003 CrossRefGoogle Scholar
  8. 8.
    Christensen PW, Klarbring A (2009) An introduction to structural optimization. Springer, BerlinzbMATHGoogle Scholar
  9. 9.
    COMSOL AB (2008) COMSOL multiphysics, Ver. 3.5a. Stockholm.Google Scholar
  10. 10.
    Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip O 49:1–38. doi: 10.1007/s00158-013-0956-z CrossRefMathSciNetGoogle Scholar
  11. 11.
    Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL conference 2009, Boston, 8–10 Oct 2009Google Scholar
  12. 12.
    Dede EM (2010) Multiphysics optimization, synthesis, and application of jet impingement target surfaces. In: Proceedings of the 12th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems, Las Vegas, 2–5 June 2010. doi: 10.1109/ITHERM.2010.5501408
  13. 13.
    Dede EM, Liu Y (2011) Heat exchanger fluid distribution manifolds and power electronics modules incorporating the same. US Patent 8,077,460 B1Google Scholar
  14. 14.
    Dede EM (2012) Optimization and design of a multipass branching microchannel heat sink for electronics cooling. J Electron Packag 134:041001. doi: 10.1115/1.4007159 CrossRefGoogle Scholar
  15. 15.
    Dede EM, Lee J, Liu Y, Robert B, Yönak SH (2012) Computational methods for the optimization and design of electromechanical vehicle systems. Int J Vehicle Des 58:159–180. doi: 10.1504/IJVD.2012.047383
  16. 16.
    Dede EM, Liu Y (2013) Cold plate assemblies and power electronics modules. US Patent, 8,427,832 B2Google Scholar
  17. 17.
    Dede EM, Nomura T, Lee J (2014) Thermal-composite design optimization for heat flux shielding, focusing, and reversal. Struct Multidiscip O 49:59–68. doi: 10.1007/s00158-013-0963-0 CrossRefMathSciNetGoogle Scholar
  18. 18.
    Díaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Meth Eng 35:1487–1502. doi: 10.1002/nme.1620350707 CrossRefzbMATHGoogle Scholar
  19. 19.
    Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61:238–254. doi: 10.1002/nme.1064 CrossRefzbMATHGoogle Scholar
  20. 20.
    Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip O 44:19–24. doi: 10.1007/s00158-010-0562-2 CrossRefzbMATHGoogle Scholar
  21. 21.
    Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Method Appl M 199:3153–3168. doi: 10.1016/j.cma.2010.06.021 CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Meth Eng 86:765–781. doi: 10.1002/nme.3072 CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Lee J, Kikuchi N (2010) Structural topology optimization of electrical machinery to maximize stiffness with body force distribution. IEEE T Magn 46:3790–3794. doi: 10.1109/TMAG.2010.2052365 CrossRefGoogle Scholar
  24. 24.
    Lee J, Dede EM, Nomura T (2011) Simultaneous design optimization of permanent magnet, coils, and ferromagnetic material in actuators. IEEE T Magn 47:4712–4716. doi: 10.1109/TMAG.2011.2160870 CrossRefGoogle Scholar
  25. 25.
    MATLAB (2009) The MathWorks Inc, Ver. 7.9. NatickGoogle Scholar
  26. 26.
    Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid-thermal interaction problems under constant input power. Struct Multidiscip O 47:571–581. doi: 10.1007/s00158-013-0887-8 CrossRefzbMATHGoogle Scholar
  27. 27.
    Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip O 27:27–42. doi: 10.1007/s00158-003-0362-z CrossRefGoogle Scholar
  28. 28.
    Maute K (2014) Topology optimization of coupled multi-physics problems. In: Rozvany GIN, Lewiński T (eds) Topology optimization in structural and continuum mechanics. Springer, Vienna, p 421–437. doi: Google Scholar
  29. 29.
    Michell AGM (1904) The limits of economy of material in frame-structures. Philos Mag 47:589–597. doi: 10.1080/14786440409463229 CrossRefGoogle Scholar
  30. 30.
    Nishiwaki S, Frecker MI, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Meth Eng 42:535–559. doi: 10.1002/(SICI)1097-0207(19980615)42:3<535:AID-NME372>3.0.CO;2-J CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int J Numer Meth Eng 65:975–1001. doi: 10.1002/nme.1468 CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49. doi: 10.1016/0021-9991(88)90002-2 CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Qian X, Sigmund O (2013) Topological design of electromechanical actuators with robustness toward over- and under-etching. Comput Method Appl M 253:237–251. doi: 10.1016/j.cma.2012.08.020 CrossRefMathSciNetGoogle Scholar
  34. 34.
    Reddy JN, Gartling DK (2000) The finite element method in heat transfer and fluid dynamics, 2nd edn. CRC Press, Boca RatonzbMATHGoogle Scholar
  35. 35.
    Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip O 37:217–237. doi: 10.1007/s00158-007-0217-0 CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Sigmund O, Torquato S (1996) Composites with extremal thermal expansion coefficients. Appl Phys Lett 69:3203. doi: 10.1063/1.117961 CrossRefGoogle Scholar
  37. 37.
    Sigmund O, Torquato S (1999) Design of smart composite materials using topology optimization. Smart Mater Struct 8. doi: 10.1088/0964-1726/8/3/308
  38. 38.
    Sigmund O (2001) Design of multiphysics actuators using topology optimization - Part I: one-material structures. Comput Method Appl M 190:6577–6604. doi: 10.1016/S0045-7825(01)00251-1
  39. 39.
    Sigmund O (2001) Design of multiphysics actuators using topology optimization - Part II: two-material structures. Comput Method Appl M 190:6605–6627. doi: 10.1016/S0045-7825(01)00252-3
  40. 40.
    Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos T Roy Soc A 361:1001–1019. doi: 10.1098/rsta.2003.1177 CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip O 48:1031–1055. doi: 10.1007/s00158-013-0978-6 MathSciNetGoogle Scholar
  42. 42.
    Spillers WR, MacBain KM (2009) Structural optimization. Springer, DordrechtzbMATHGoogle Scholar
  43. 43.
    Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Meth Eng 24:359–373. doi: 10.1002/nme.1620240207 CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Svanberg K, Svärd H (2013) Density filters for topology optimization based on the Pythagorean means. Struct Multidiscip O 48:859–875. doi: 10.1007/s00158-013-0938-1 CrossRefGoogle Scholar
  45. 45.
    Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Method Appl M 93:291–318. doi: 10.1016/0045-7825(91)90245-2 CrossRefzbMATHGoogle Scholar
  46. 46.
    Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010) A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. Int J Numer Meth Eng 83:1580–1624. doi: 10.1002/nme.2874 CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Yamasaki S, Nomura T, Kawamoto A, Sato K, Izui K, Nishiwaki S (2010) A level set based topology optimization method using the discretized signed distance function as the design variables. Struct Multidiscip O 41:685–698. doi: 10.1007/s00158-009-0453-6 CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Yin L, Ananthasuresh GK (2002) A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms. Sensor Actuat A-Phys 97–98:599–609. doi: 10.1016/S0924-4247(01)00853-6 CrossRefGoogle Scholar
  49. 49.
    Yoon GH, Jensen JS, Sigmund O (2007) Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation. Int J Numer Meth Eng 70:1049–1075. doi: 10.1002/nme.1900 CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24:1225–1233. doi: 10.1007/s12206-010-0328-1 CrossRefGoogle Scholar
  51. 51.
    Yoon GH (2012) Topological layout design of electro-fluid-thermal-compliant actuator. Comput Method Appl M 209–212:28–44. doi: 10.1016/j.cma.2011.11.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Toyota Research Institute of North AmericaAnn ArborUSA
  2. 2.Korea Aerospace UniversityGoyang-siKorea, Republic of (South Korea)
  3. 3.Toyota Central R&D Labs.NagakuteJapan

Personalised recommendations