Skip to main content

Overview of Physics for Electromechanical Systems

  • Chapter
  • First Online:
Multiphysics Simulation

Abstract

In this chapter, an overview of physics is provided for electromechanical systems concerned with electronic components, low frequency magnetic components, higher radio frequency (RF) components, and motors and actuators. Several relevant physical scales exist when considering electromechanical systems ranging from the material or device level to the component, subsystem, or fully assembled system level. Microelectromechanical systems (MEMS), which refer to devices of size less than 1 mm but greater than 1 \(\upmu \)m, are multiphysics by nature and fall within the broader category of electromechanical systems. However, several authoritative texts related to the design/optimization of MEMS currently exist, and this topic is not extensively covered here. The majority of the numerical examples presented in this book are focused on design optimization at the component or sub-component level. Thus, in the context of these somewhat larger scales, the coupling of several physical phenomena may be defined, and this chapter is focussed on interactions that engineers must consider when designing such electromechanical systems. More specifics are provided on the multiple physical interactions encountered for electronic system components in Sect. 2.1. From there, the physics involved in the simulation of low frequency magnetic components including inductors and transformers are outlined in Sect. 2.2, where operating frequencies in the kHz–MHz range are generally considered. Radio frequency (RF) components operating in the MHz–GHz frequency range are subsequently described in Sect. 2.3 followed by motors and actuators in Sect. 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bastos JPA, Sadowski N (2003) Electromagnetic modeling by finite element methods. Marcel Dekker, New York

    Book  Google Scholar 

  2. Bianchi N (2005) Electrical machine analysis using finite elements. CRC Press, Boca Raton

    Google Scholar 

  3. Bossche AVD, Valchev VC (2005) Inductors and transformers for power electronics. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Chmielak B, Waldow M, Matheisen C, Ripperda C, Bolten J, Wahlbrink T, Nagel M, Merget F, Kurz H (2011) Pockels effect based fully integrated, strained silicon electro-optic modulator. Opt Express 19:17212–17219. doi:10.1364/OE.19.017212

    Article  Google Scholar 

  5. Del Vecchio RM, Poulin B, Feghali PT, Shah DM, Ahuja R (2010) Transformer design principles. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Fay CE, Comstock RL (1965) Operation of the ferrite junction circulator. IEEE Trans Microw Theory Tech 1:15–27. doi:10.1109/TMTT.1965.1125923

    Article  Google Scholar 

  7. Flanagan WM (1992) Handbook of transformer design and applications, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  8. Gad-el-Hak M (2002) The MEMS handbook. CRC Press, Boca Raton

    MATH  Google Scholar 

  9. Gianchandani Y, Tabata O, Zappe H (2008) Comprehensive microsystems, vol 1–3. Elsevier, Amsterdam

    Google Scholar 

  10. Hache F, Ricard D, Flytzanis C, Kreibig U (1988) The optical kerr effect in small metal particles and metal colloids: the case of gold. Appl Phys A Mater Sci Process 47:347–357. doi:10.1007/BF00615498

    Google Scholar 

  11. Hsu T-R (2008) MEMS and microsystems: design, manufacture, and nanoscale engineering, 2nd edn. Wiley, Hoboken

    Google Scholar 

  12. Incropera FP (1999) Liquid cooling of electronic devices by single-phase convection. Wiley-Interscience, New York

    Google Scholar 

  13. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light, 1st edn. Princeton University Press, New Jersey

    MATH  Google Scholar 

  14. Kays WM, London AL (1998) Compact heat exchangers. Krieger Publishing Company, Malabar

    Google Scholar 

  15. Kim S-J, Lee S-W (1996) Air cooling technology for electronic equipment. CRC Press, Boca Raton

    Google Scholar 

  16. Lin SY, Moreno J, Fleming J (2003) Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl Phys Lett 83:380. doi:10.1063/1.1592614

    Article  Google Scholar 

  17. Mikami O, Nakagome H (1984) Waveguided optical switch in InGaAs/InP using free-carrier plasma dispersion. Electron Lett 20:228–229. doi:10.1049/el:19840153

    Article  Google Scholar 

  18. Remsburg R (1998) Advanced thermal design of electronic equipment. International Thomson Publishing, Florence

    Book  Google Scholar 

  19. Salon SJ (1995) Finite element analysis of electrical machines. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  20. Senturia SR (2001) Microsystem design. Springer, New York

    Google Scholar 

  21. Silvester PP, Ferrari RL (1996) Finite elements for electrical engineers, 3rd edn. Cambridge University Press, New York

    Book  Google Scholar 

  22. Soref R (2006) The past, present, and future of silicon photonics. IEEE J Sel Top Quant 12:1678–1687. doi:10.1109/JSTQE.2006.883151

    Article  Google Scholar 

  23. Steinberg DS (2000) Vibration analysis for electronic equipment. Wiley, New York

    Google Scholar 

  24. Steinberg DS (2001) Preventing thermal cycling and vibration failures in electronic equipment. Wiley, New York

    Google Scholar 

  25. Tlusty T, Meller A, Bar-Ziv R (1998) Optical gradient forces of strongly localized fields. Phys Rev Lett 81:1738–1741. doi:10.1103/PhysRevLett. 81.1738

    Article  Google Scholar 

  26. Wedlock BD (1963) Thermo-photo-voltaic energy conversion. Proc IEEE 51:694–698. doi:10.1109/PROC.1963.2261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan M. Dede .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Dede, E.M., Lee, J., Nomura, T. (2014). Overview of Physics for Electromechanical Systems. In: Multiphysics Simulation. Simulation Foundations, Methods and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-5640-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5640-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5639-0

  • Online ISBN: 978-1-4471-5640-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics