Advertisement

Introduction

  • Ercan M. DedeEmail author
  • Jaewook Lee
  • Tsuyoshi Nomura
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

Starting from the mid-1950s, and progressing into the following two decades, the mathematical framework behind the finite element method was developed by researchers due to the potential of the method as a revolutionary tool in the analysis and design of civil and aerospace structures. Building off this early work, and under financial support from the United States federal government, finite element analysis software was developed for aerospace applications. Today, finite element analysis is a highly developed and commercially available computational approach that allows the estimation of the response of real world structures that are subjected to multiple physical processes. In this chapter, the role of finite element analysis in design via simulation is explored, and the importance of this approach for advanced electromechanical design is emphasized. Representative differences between single and multiphysics simulations are presented in the context of an example electromechanical system. Common challenges associated with multiphysics simulation are then described to motivate the discussion of the various computational tools presented throughout this book. An introductory overview of the selected optimization techniques that are presented later on in the text is additionally provided.

Keywords

Topology Optimization Electromechanical System Defense Advance Research Project Agency Optimal Structural Topology Defense Advance Research Project Agency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Altair HyperWorks, Altair Engineering Inc. 1820 Big Beaver Rd. Troy, MI 48083Google Scholar
  2. 2.
    ANSYS Multiphysics, ANSYS Inc. Southpointe, 275 Technology Drive, Canonsburg, PA 15317Google Scholar
  3. 3.
    Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Method Appl M 71:197–224. doi: 10.1016/0045-7825(88)90086-2
  4. 4.
    Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, 2nd edn. Springer, BerlinGoogle Scholar
  5. 5.
    COMSOL Multiphysics, COMSOL, Inc. 1 New England Executive Park, Suite 350, Burlington, MA 01803Google Scholar
  6. 6.
    DARPA (2014) Tactical technology office: advanced vehicle make (AVM). http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx. Accessed 12 March 2014
  7. 7.
    Dede EM, Lee J, Liu Y, Robert B, Yönak SH (2012) Computational methods for the optimization and design of electromechanical vehicle systems. Int J Vehicle Des 58(2–4):159–180. doi: 10.1504/IJVD.2012.047383
  8. 8.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing, ReadingGoogle Scholar
  9. 9.
    Isight, Dassault Systèmes. 10, Rue Marcel Dassault, 78140 Vélizy-Villacoublay, FranceGoogle Scholar
  10. 10.
    Jakiela MJ, Chapman C, Duda J, Adewuya A, Saitou K (2000) Continuum structural topology design with genetic algorithms. Comput Method Appl M 186:339–356. doi: 10.1016/S0045-7825(99)00390-4 CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Jiang ZQ, Huang Y, Chandra A (1997) Thermal stresses in layered electronics assemblies. J Electron Packaging 119:127–132. doi: 10.1115/1.2792218 CrossRefGoogle Scholar
  12. 12.
    Kawamoto A, Matsumori T, Nomura T, Kondoh T, Yamasaki S, Nishiwaki S (2012) Topology optimization by a time-dependent diffusion equation. Int J Numer Meth Eng 93:795–817. doi: 10.1002/nme.4407 MathSciNetGoogle Scholar
  13. 13.
    Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Method Appl M 199:3153–3168. doi: 10.1016/j.cma.2010.06.021 CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Krog L, Tucker A, Rollema G (2002) Application of topology, sizing and shape optimization methods to optimal design of aircraft components. Altair Engineering, CoventryGoogle Scholar
  15. 15.
    Lethbridge P (2004) Multiphysics analysis. Ind Phys 12:26–29Google Scholar
  16. 16.
    Littmarck S (2001) Solving differential equations. Ind Phys 2:21–23Google Scholar
  17. 17.
    Logan DL (2002) A first course in the finite element method, 3rd edn. Brooks/Cole, Pacific GroveGoogle Scholar
  18. 18.
    Matsubara T, Yaguchi H, Takaoka T, Jinno K (2009) Development of new hybrid system for compact class vehicles. SAE Technical Paper 2009–01-1332. doi: 10.4271/2009-01-1332Google Scholar
  19. 19.
    MSC Software (2014) MSC Nastran. http://www.mscsoftware.com/product/msc-nastran. Accessed 12 March 2014
  20. 20.
    Nomura T, Sato K, Nishiwaki S, Yoshimura M (2007) Multi-disciplinary multi-objective topology optimization of electromagnetics and structural mechanics: for case of optimal dielectric resonator antenna designs. T Jpn Soc Mech Eng A 73:1111–1119. doi: 10.1299/kikaia.73.1111 CrossRefGoogle Scholar
  21. 21.
    Nozawa N, Maekawa T, Nozawa S, Asakura K (2009) Development of power control unit for compact-class vehicle. SAE Int J Passeng Cars Electron Electr Syst 2:376–382. doi: 10.4271/2009-01-1310 Google Scholar
  22. 22.
    Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int J Numer Meth Eng 65:975–1001. doi: 10.1002/nme.1468 CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Savander BR, Shankara P (2012) Propulsion system performance optimization—design by analysis. CD-adapco Dynamics 33:47–50Google Scholar
  24. 24.
    Schoofs AJG (1993) Structural optimization history and state-of-the-art. In: Dijksman JF, Nieuwstadt FTM (eds) Topics in applied mechanics. Kluwer Academic Publishers, Netherlands, pp 339–345Google Scholar
  25. 25.
    Shigley JE, Mischke CR, Budynas RG (2004) Mechanical engineering design, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part I: one-material structures. Comput Method Appl M 190:6577–6604. doi: 10.1016/S0045-7825(01)00251-1 CrossRefzbMATHGoogle Scholar
  27. 27.
    Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Method Appl M 190:6605–6627. doi: 10.1016/S0045-7825(01)00252-3 CrossRefGoogle Scholar
  28. 28.
    Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip O 21:120–127. doi: 10.1007/s001580050176 CrossRefGoogle Scholar
  29. 29.
    Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos T Roy Soc A 361:1001–1019. doi: 10.1098/rsta.2003.1177 CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Thilmany J (2010) Multiphysics: all at once: physical phenomena-and engineers-rarely work in isolation, so simulation software is addressing those facts. Mech Eng CIME 132:39–41Google Scholar
  31. 31.
    Timoshenko S (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11:233–255. doi: 10.1364/JOSA.11.000233 CrossRefGoogle Scholar
  32. 32.
    Yin L, Ananthasuresh GK (2002) A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms. Sensor Actuat A-Phys 97–98:599–609. doi: 10.1016/S0924-4247(01)00853-6 CrossRefGoogle Scholar
  33. 33.
    Yoon GH (2012) Topological layout design of electro-fluid-thermal-compliant actuator. Comput Method Appl M 209–212:28–44. doi: 10.1016/j.cma.2011.11.005 CrossRefGoogle Scholar
  34. 34.
    Yoon GH, Jensen JS, Sigmund O (2007) Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation. Int J Numer Meth Eng 70:1049–1075. doi: 10.1002/nme.1900 CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Zienkiewicz OC, Taylor RL, Zhu JZ (1967) The finite element method: its basis and fundamentals, 1st edn. Elsevier Butterworth-Heinemann, BurlingtonGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Toyota Research Institute of North AmericaAnn ArborUSA
  2. 2.Korea Aerospace UniversityGoyang-siKorea, Republic of (South Korea)
  3. 3.Toyota Central R&D Labs.NagakuteJapan

Personalised recommendations