Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Simulation Foundations, Methods and Applications ((SFMA))

Abstract

Starting from the mid-1950s, and progressing into the following two decades, the mathematical framework behind the finite element method was developed by researchers due to the potential of the method as a revolutionary tool in the analysis and design of civil and aerospace structures. Building off this early work, and under financial support from the United States federal government, finite element analysis software was developed for aerospace applications. Today, finite element analysis is a highly developed and commercially available computational approach that allows the estimation of the response of real world structures that are subjected to multiple physical processes. In this chapter, the role of finite element analysis in design via simulation is explored, and the importance of this approach for advanced electromechanical design is emphasized. Representative differences between single and multiphysics simulations are presented in the context of an example electromechanical system. Common challenges associated with multiphysics simulation are then described to motivate the discussion of the various computational tools presented throughout this book. An introductory overview of the selected optimization techniques that are presented later on in the text is additionally provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    NASTRAN® is a registered trademark of the National Aeronautics Space Administration.

  2. 2.

    MATLAB® is a registered trademark of The MathWorks, Inc.

References

  1. Altair HyperWorks, Altair Engineering Inc. 1820 Big Beaver Rd. Troy, MI 48083

    Google Scholar 

  2. ANSYS Multiphysics, ANSYS Inc. Southpointe, 275 Technology Drive, Canonsburg, PA 15317

    Google Scholar 

  3. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Method Appl M 71:197–224. doi:10.1016/0045-7825(88)90086-2

  4. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  5. COMSOL Multiphysics, COMSOL, Inc. 1 New England Executive Park, Suite 350, Burlington, MA 01803

    Google Scholar 

  6. DARPA (2014) Tactical technology office: advanced vehicle make (AVM). http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx. Accessed 12 March 2014

  7. Dede EM, Lee J, Liu Y, Robert B, Yönak SH (2012) Computational methods for the optimization and design of electromechanical vehicle systems. Int J Vehicle Des 58(2–4):159–180. doi:10.1504/IJVD.2012.047383

  8. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing, Reading

    Google Scholar 

  9. Isight, Dassault Systèmes. 10, Rue Marcel Dassault, 78140 Vélizy-Villacoublay, France

    Google Scholar 

  10. Jakiela MJ, Chapman C, Duda J, Adewuya A, Saitou K (2000) Continuum structural topology design with genetic algorithms. Comput Method Appl M 186:339–356. doi:10.1016/S0045-7825(99)00390-4

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang ZQ, Huang Y, Chandra A (1997) Thermal stresses in layered electronics assemblies. J Electron Packaging 119:127–132. doi:10.1115/1.2792218

    Article  Google Scholar 

  12. Kawamoto A, Matsumori T, Nomura T, Kondoh T, Yamasaki S, Nishiwaki S (2012) Topology optimization by a time-dependent diffusion equation. Int J Numer Meth Eng 93:795–817. doi:10.1002/nme.4407

    MathSciNet  Google Scholar 

  13. Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Method Appl M 199:3153–3168. doi:10.1016/j.cma.2010.06.021

    Article  MATH  MathSciNet  Google Scholar 

  14. Krog L, Tucker A, Rollema G (2002) Application of topology, sizing and shape optimization methods to optimal design of aircraft components. Altair Engineering, Coventry

    Google Scholar 

  15. Lethbridge P (2004) Multiphysics analysis. Ind Phys 12:26–29

    Google Scholar 

  16. Littmarck S (2001) Solving differential equations. Ind Phys 2:21–23

    Google Scholar 

  17. Logan DL (2002) A first course in the finite element method, 3rd edn. Brooks/Cole, Pacific Grove

    Google Scholar 

  18. Matsubara T, Yaguchi H, Takaoka T, Jinno K (2009) Development of new hybrid system for compact class vehicles. SAE Technical Paper 2009–01-1332. doi: 10.4271/2009-01-1332

    Google Scholar 

  19. MSC Software (2014) MSC Nastran. http://www.mscsoftware.com/product/msc-nastran. Accessed 12 March 2014

  20. Nomura T, Sato K, Nishiwaki S, Yoshimura M (2007) Multi-disciplinary multi-objective topology optimization of electromagnetics and structural mechanics: for case of optimal dielectric resonator antenna designs. T Jpn Soc Mech Eng A 73:1111–1119. doi:10.1299/kikaia.73.1111

    Article  Google Scholar 

  21. Nozawa N, Maekawa T, Nozawa S, Asakura K (2009) Development of power control unit for compact-class vehicle. SAE Int J Passeng Cars Electron Electr Syst 2:376–382. doi:10.4271/2009-01-1310

    Google Scholar 

  22. Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int J Numer Meth Eng 65:975–1001. doi:10.1002/nme.1468

    Article  MATH  MathSciNet  Google Scholar 

  23. Savander BR, Shankara P (2012) Propulsion system performance optimization—design by analysis. CD-adapco Dynamics 33:47–50

    Google Scholar 

  24. Schoofs AJG (1993) Structural optimization history and state-of-the-art. In: Dijksman JF, Nieuwstadt FTM (eds) Topics in applied mechanics. Kluwer Academic Publishers, Netherlands, pp 339–345

    Google Scholar 

  25. Shigley JE, Mischke CR, Budynas RG (2004) Mechanical engineering design, 7th edn. McGraw-Hill, New York

    Google Scholar 

  26. Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part I: one-material structures. Comput Method Appl M 190:6577–6604. doi:10.1016/S0045-7825(01)00251-1

    Article  MATH  Google Scholar 

  27. Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Method Appl M 190:6605–6627. doi:10.1016/S0045-7825(01)00252-3

    Article  Google Scholar 

  28. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip O 21:120–127. doi:10.1007/s001580050176

    Article  Google Scholar 

  29. Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos T Roy Soc A 361:1001–1019. doi:10.1098/rsta.2003.1177

    Article  MATH  MathSciNet  Google Scholar 

  30. Thilmany J (2010) Multiphysics: all at once: physical phenomena-and engineers-rarely work in isolation, so simulation software is addressing those facts. Mech Eng CIME 132:39–41

    Google Scholar 

  31. Timoshenko S (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11:233–255. doi:10.1364/JOSA.11.000233

    Article  Google Scholar 

  32. Yin L, Ananthasuresh GK (2002) A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms. Sensor Actuat A-Phys 97–98:599–609. doi:10.1016/S0924-4247(01)00853-6

    Article  Google Scholar 

  33. Yoon GH (2012) Topological layout design of electro-fluid-thermal-compliant actuator. Comput Method Appl M 209–212:28–44. doi:10.1016/j.cma.2011.11.005

    Article  Google Scholar 

  34. Yoon GH, Jensen JS, Sigmund O (2007) Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation. Int J Numer Meth Eng 70:1049–1075. doi:10.1002/nme.1900

    Article  MATH  MathSciNet  Google Scholar 

  35. Zienkiewicz OC, Taylor RL, Zhu JZ (1967) The finite element method: its basis and fundamentals, 1st edn. Elsevier Butterworth-Heinemann, Burlington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan M. Dede .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Dede, E.M., Lee, J., Nomura, T. (2014). Introduction. In: Multiphysics Simulation. Simulation Foundations, Methods and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-5640-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5640-6_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5639-0

  • Online ISBN: 978-1-4471-5640-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics