Introduction: The SIMBAD Project

  • Marcello PelilloEmail author
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)


This introductory chapter describes the SIMBAD project, which represents the first systematic attempt at bringing to full maturation a paradigm shift that is just emerging within the pattern recognition and machine learning domains, where researchers are becoming increasingly aware of the importance of similarity information per se, as opposed to the classical (feature-based) approach.


Object Representation Foundational Issue Aristotelian View Ihara Zeta Function Pairwise Structural Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990) Google Scholar
  2. 2.
    Balcan, M.F., Blum, A., Srebro, N.: A theory of learning with similarity functions. Mach. Learn. 72(1–2), 89–112 (2008) CrossRefGoogle Scholar
  3. 3.
    Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987) CrossRefGoogle Scholar
  4. 4.
    Bridgman, P.W.: The Logic of Modern Physics. MacMillan, New York (1927) Google Scholar
  5. 5.
    Bunke, H., Sanfeliu, A.: Syntactic and Structural Pattern Recognition: Theory and Applications. World Scientific, Singapore (1990) CrossRefzbMATHGoogle Scholar
  6. 6.
    Dubuisson, M.P., Jain, A.K.: Modified Hausdorff distance for object matching. In: Proc. Int. Conf. Pattern Recognition (ICPR), pp. 566–568 (1994) CrossRefGoogle Scholar
  7. 7.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000) Google Scholar
  8. 8.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets. Cambridge University Press, Cambridge (2010) zbMATHGoogle Scholar
  9. 9.
    Edelman, S.: Representation and Recognition in Vision. MIT Press, Cambridge (1999) Google Scholar
  10. 10.
    Goldstone, R.L., Son, J.Y.S.: In: Holyoak, K., Morrison, R. (eds.) The Cambridge Handbook of Thinking and Reasoning, pp. 13–36. Cambridge University Press, Cambridge (2005) Google Scholar
  11. 11.
    Jacobs, D.W., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances: Image retrieval and class representation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 583–600 (2000) CrossRefGoogle Scholar
  12. 12.
    Kleinberg, J.: Authoritative sources in a hyperlink environment. In: Proc. 9th ACMSIAM Symposium on Discrete Algorithms, pp. 668–677 (1998) Google Scholar
  13. 13.
    Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal About the Mind. University of Chicago Press, Chicago (1987) CrossRefGoogle Scholar
  14. 14.
    Mayr, E.: The Growth of Biological Thought. Harvard University Press, Cambridge (1982) Google Scholar
  15. 15.
    Popper, K.R.: Conjectures and Refutations: the Growth of Scientific Knowledge. Routledge, London (1963) Google Scholar
  16. 16.
    Resnik, M.D.: Mathematics as a Science of Patterns. Clarendon, Oxford (1997) zbMATHGoogle Scholar
  17. 17.
    Rorty, R.: A world without substances and essences. In: Philosophy and Social Hope, pp. 47–71. Penguin, London (1999) Google Scholar
  18. 18.
    Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–106 (2008) Google Scholar
  19. 19.
    von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: Science or art? In: JMLR: Workshop and Conference Proceedings, vol. 27, pp. 65–79 (2012) Google Scholar
  20. 20.
    Watanabe, S.: Pattern Recognition: Human and Mechanical. Wiley, New York (1985) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.DAISUniversità Ca’ FoscariVeniceItaly

Personalised recommendations