Skip to main content

Introduction to the Correspondence

  • Chapter
  • 886 Accesses

Abstract

The book’s introduction presents the main mathematical themes considered by Paul Lévy and Maurice Fréchet in their correspondence to one another and examines the scientific and institutional context in which their letters were exchanged during their nearly fifty years of correspondence.

The book is divided into helpful sections. A first section is devoted to a short presentation of Emile Borel and Jacques Hadamard, who were mentors to Lévy and Fréchet. The second section examines the probabilistic stage in France at the turn of the century, during which time Lévy and Fréchet were students. The third section studies several aspects of the probabilistic work in Russia and Soviet Union.

The authors have provided information on how Soviet Union became the center for the study of probability theory between the two world wars. The authors also examine the similarities between Lévy’s and Fréchet’s interests and the discovery of Lévy’s stable distributions.

Finally, three sections concentrate on the history of three major topics of Lévy’s studies in probability theory: potential theory, Brownian motion and stochastic integration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    (1890) Acta Math. 13:1–270.

  2. 2.

    (1894) Rev. Gén. Sci. Pures Appl. 5:513–521. For more on these matters, see Von Plato (1994, Chap. 3) and Mazliak (2014).

  3. 3.

    (1905) Bull. Soc. Math. Fr. 33:123–128.

  4. 4.

    (1909) Rend. Circ. Mat. Palermo 27:247–270.

  5. 5.

    Kolmogoroff, Andrei (1931) Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104:415–458.

  6. 6.

    Our emphasis.

  7. 7.

    Petrograd is the name taken by Saint Petersburg from the beginning of the First World War until 1924 when it became Leningrad.

  8. 8.

    Seneta (2001) affirms that this occurred in reaction to an article by Nekrassov, explaining that a proof of the existence of free will emerges from the everyday observation of averaging phenomenon in society (for example, the average number of births remains almost the same from one year to the next) because independence of actions is necessary to apply the law of large numbers. Markov, extremely anti-religious, was eager to disprove this necessity.

  9. 9.

    Luzin and Egorov had close ties to orthodox theological circles, notably to the extraordinary Pavel Alexandrovitch Florensky (1882–1937), Luzin’s close friend, who managed both studies in mathematics at the University of Moscow and religion at the Academy of Theology. In 1912, at the Academy, he defended a thesis searching for, à la V. Soloviev, a spiritual interpretation of science. Luzin also spent some time studying theology. The correspondence between Luzin and Florensky is the object of an interesting paper (Демидов et al. 1989). On Florensky, see the beautiful book Betti (2010), and also Žust (2002) for biographical aspects.

  10. 10.

    Wordplay on the name Luzin, probably an allusion to the Lusitania, sunk in 1916, which was a pretext for the USA to enter the First World War.

  11. 11.

    Detailed information about Slutsky is available in Locker (2001), as well as in the 1948 eulogy to him written by Kolmogorov (Колмогоров А.Н. (1948) Е.Е. Слуцкий. Успехи Математической Наук III(4):142–151).

  12. 12.

    See, for instance, the illuminating resume of the XVIIIth Congress of the Party published as an introduction to the 1939 volume of the Известия Академии Наук СССР.

  13. 13.

    A violent campaign orchestrated by various political bodies accused Luzin of submission to the West, on account of his numerous publications in western journals. See Dugac (2003) and Демидов and Левшин (1999).

  14. 14.

    See Демидов and Левшин (1999).

  15. 15.

    Which, most ironically, is also the reason for its lack of esteem by the French “structuralist” school (see Maashal 1999).

  16. 16.

    The archives of the Institut Henri Poincaré also contain an enormous dossier on the physicist Frenkel, who postponed his visit from 1934 to 1937.

  17. 17.

    Draft of a speech in Kiev, archives of the Paris Academy of Science.

  18. 18.

    On Kolmogorov, the reader is invited to consult (Chaumont et al. 2007).

  19. 19.

    Kolmogoroff, Andrei (1931) Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104:415–458.

  20. 20.

    See Chap. 7 of Von Plato (1994) on this question.

  21. 21.

    Letter, August 3, 1939 (archives of the Paris Academy of Science). The very late date of this letter, from a moment when contacts between Soviet and western scientists had almost disappeared, is another sign of the benevolent attitude of the regime toward Kolmogorov.

  22. 22.

    For example, during the winter of 1933–1934, Kolmogorov wrote to Fréchet (January 29, 1934, archives of the Paris Academy of Science) that he had obtained the criterion for a process in continuous time in the form E(|f(x+Δ)−f(x)|K)=O(|Δ|1+ε), which he applied to Brownian motion. Oddly, the famous criterion that bears his name was never published by Kolmogorov himself, but appears for the first time (properly attributed to him) in an article by Slutsky in 1937. Incidentally, the letter of Kolmogorov just mentioned is written in an uncharacteristically anxious style. He wrote for instance: “It requires considerable energy to surmount formal difficulties” suggesting that he was asking Borel for some official help so that he could obtain the permission to travel). Kolmogorov apparently encountered unexpected bureaucratic difficulties regarding his trip to France, a sign of the restrictions that the Soviet authorities were imposing on international travel.

  23. 23.

    (1910) Rend. Circ. Mat. Palermo 30:1–26.

  24. 24.

    On Gateaux, see the complete study provided in Mazliak (2011).

  25. 25.

    (1992) Vrin, Paris.

  26. 26.

    On Daniell, see Aldrich (2007).

  27. 27.

    On this important topic, see the many details contained in the paper of Mazliak (2011).

  28. 28.

    Lévy, Paul (1919) Sur la notion de moyenne dans le domaine fonctionnel. CRAS (August 25, 1919).

  29. 29.

    Balanzat, Manuel (1960) La différentielle d’Hadamard-Fréchet dans les espaces vectoriels topologiques. CRAS (November 28, 1960).

  30. 30.

    For details on this important moment in Fréchet’s life, see Havlova et al. (2005).

  31. 31.

    For Borel’s interest in probability, see Durand and Mazliak (2011).

  32. 32.

    Presses Universitaires de France, Paris (1955).

  33. 33.

    See Bru (1999).

  34. 34.

    Cramer, Harald (1958) Eloge de M. Paul Lévy. In: Le calcul des probabilités et ses applications (July 15–20, 1958). Editions du CNRS, Paris. pp. 13–15.

  35. 35.

    See Barbut and Mazliak (2008).

  36. 36.

    (1923) Математический Сборник 31:296–301.

  37. 37.

    Czuber, Emanuel (1891) Theorie des Beobachtungsfehler. Teubner, Leipzig.

  38. 38.

    (1924) Математический Сборник 32:5–8.

  39. 39.

    (1925) CRAS 180:1716–1719.

  40. 40.

    Fréchet, Maurice (1925) Sur la loi des erreurs d’observation. CRAS 181:204–205.

  41. 41.

    Fréchet, Maurice (1928) Sur la loi de probabilités de l’écart maximum. Ann. Soc. Pol. Math. 6:93–122 and Fréchet, Maurice (1928) Sur l’hypothèse de l’additivité des erreurs partielles. Bull. Soc. Math. Fr. 52:203–216.

  42. 42.

    Lévy, Paul (1929) Sur quelques travaux relatifs à la théorie des erreurs. Bull. Soc. Math. Fr. 53:11–32.

  43. 43.

    See Fréchet and Halbwachs (1924, Chap. V).

  44. 44.

    See Mazliak (2014).

  45. 45.

    In the complementary notes to the second edition of Lévy (1937) Lévy mentions that Fréchet concurred.

  46. 46.

    Lévy (1937), note II in the second edition of 1954.

  47. 47.

    French: type de loi.

  48. 48.

    Or an average, or more generally a positive linear combination.

  49. 49.

    CRAS (February 3, 1936).

  50. 50.

    See pp. 495–513 of Humbert’s lecture notes of his course in analysis at the Ecole Polytechnique (first division, 1919); the note 319; and also Barbut and Mazliak (2008).

  51. 51.

    One can read about Lhoste in Hadjadji Seddik-Ameur, Nacira (2003) Les tests de normalité de Lhoste. Math. Sci. Hum. 162:19–43.

  52. 52.

    Lévy, Paul (1922) Sur le rôle de la loi de Gauss dans la théorie des erreurs. CRAS 174:855–857.

  53. 53.

    (1924) Bull. Soc. Math. Fr. 52:49–85.

  54. 54.

    Ann. Soc. Pol. Math. 5:93–116.

  55. 55.

    (1929) Bull. Soc. Math. Fr. 53:1–21.

  56. 56.

    Intégrales à éléments aléatoires indépendants et lois stables à n variables. CRAS (March 17, 1936).

  57. 57.

    Pareto, Vilfredo. Cours d’Économie Politique Professé a l’Université de Lausanne. Volume I (1896), Volume II (1897). F. Rouge, Lausanne.

  58. 58.

    See the note 6 to the Preface by Kaï Laï Chung.

  59. 59.

    For details, see Dieudonné (1978), Bouleau (1986), Locker (2001), Taton (1961), Brelot (1964), Choquet (1990), Chung (1995) and the very complete article by De la Pradelle (1988).

  60. 60.

    See the historical notices in the work of Dellacherie and Meyer (1975), the text by Bouleau (1986) and numerous remarks and notes by Doob (1953, 1980).

  61. 61.

    See footnote 62 below.

  62. 62.

    The double layer potential consists of a surface distribution of dipole moments all oriented toward the same side of a double-sided surface. The double layer potential may also be viewed as the result of two surface charge distributions when the surfaces are infinitesimally close. The usage of the word “distribution” here follows that of physics of the period, that is as a density of electric charges. During the first quarter of the 20th century this was a continuous function. Only later, in the work of Schwartz, did this concept as well as that of a unit-doublet find definitions not requiring a limit by means of distribution theory.

  63. 63.

    This refers to the Berlin academic Carl Neumann (1832–1925), who was editor of Mathematische Annalen.

  64. 64.

    In two dimensions the potential is logarithmic and the singularity which must be removed is lnPM=lnr, rather than 1/PM=1/r.

  65. 65.

    Independently of Green, Gauss’ mean-value theorem for harmonic functions also shows that the potential is determined by its values on the boundary. This result allows one to derive the Poisson representation formula.

  66. 66.

    This designation is used deliberately, since it was introduced by Lévy and employed in 1926 by Bouligand in the volume of the Mémorial des Sciences Mathématiques he devoted to these questions.

  67. 67.

    Especially for the question of the theorem on the conformal representation in the complex plane which is related to the questions considered here. It is well known that in two dimensions, potential theory has a close relation to the theory of holomorphic functions.

  68. 68.

    The Green function is itself the solution of a Dirichlet problem. Except for domains with a boundary consisting of curves or surfaces of a simple geometry, for which the Green function is known from the work of Poisson, Liouville, Cauchy and their successors, very few explicit examples are available. However numerical methods may be used to determine Green functions to a high degree of accuracy.

  69. 69.

    Lévy, Paul (1909) Sur les valeurs de la fonction de Green dans le voisinage du contour. Bull. Soc. Math. Fr. 34:186–190.

  70. 70.

    Lévy, Paul (1911) Une généralisation de la méthode de Fredholm pour la résolution du problème de Dirichlet. J. Ec. Polytech. 15:197–210. Fredholm, the Swedish creator of the theory of integral equations that bears his name, developed this method in 1900.

  71. 71.

    He called Riemann’s method (which uses Dirichlet’s principle) ‘simple and elegant but not rigorous,’ and the other methods are quite insufficient in Poincaré’s opinion for solving Dirichlet’s problem.

  72. 72.

    Hilbert declared at the congress of 1900: ‘Every problem in the calculus of variations has a solution provided that one makes the appropriate hypotheses on the boundary conditions and, if necessary sufficiently extends the concept of solution’. However in 1901, in order to give a proper proof of Riemann’s theorem, he had to substitute the calculus of variations for very sophisticated theorems on equicontinuous families of harmonic functions.

  73. 73.

    Lévy (1970, p. 42).

  74. 74.

    Lévy, Paul (1935) Sur une forme tensorielle des équations fonctionnelles des fonctions de Green et de Neumann. CRAS 200:1723–1725.

  75. 75.

    Astérique (1988) n157–158.

  76. 76.

    See the article Fichera, Gaetano (1994) Vito Volterra and the birth of functional analysis. In Pier (1994), pp. 171–183.

  77. 77.

    For this fascinating story, see the detailed study of Mazliak (2011).

  78. 78.

    For the classic functionals of mechanics of the form \(\int_{0}^{1} f(t,x,\dot{x})\,dt\), the variation cannot be put in this form, except in certain special cases. For linear functionals, which were characterized in 1903 by Hadamard and transformed in 1907 by Riesz into a representation as Stieltjès integrals \(\int_{0}^{1} x(t)\,dF(t)\), the variation can again not be put in Volterra’s form, because of the possibility of points of discontinuity of F. Also, Volterra’s form is not possible when U(x)=x(τ) (i.e. when F is the Dirac measure at the point τ) for which δU=(δx)(τ).

  79. 79.

    Wiener, Norbert (1924) Une condition nécessaire et suffisante de possibilité pour le problème de Dirichlet. CRAS 178:1050–1053.

  80. 80.

    Lebesgue discovered a famous counter-example of insolvability of the Dirichlet problem (called Lebesgue’s spine). This demonstrates the close relation between the existence of a solution and the topology of the boundary. He was preceded in this type of example by the Polish mathematician Zaremba.

  81. 81.

    Lebesgue is referring to the two notes in CRAS by Bouligand on November 3 and 17, 1919.

  82. 82.

    Wiener, Norbert (1925) Note on a paper of O. Perron. J. Math. Phys. 4:21–32.

  83. 83.

    CRAS (November 26, 1945).

  84. 84.

    This version of the theorem is sufficient to understand the Lévy-Fréchet correspondence. Modern definitions of the harmonic measure are more subtle and their connection with the Dirichlet problem more general. This more recent work was originated by Wiener and then extended by Brelot. The harmonic measure appears as a Radon measure H. If f is super-harmonic in a given open set and F is the set of super-harmonic functions g such that lim g(x)≥f(y) (for x an interior point and y on the boundary), one may consider \(\overline{H}(f) = \inf F \) and \(\underline{H}(f) = -\overline{H}(-f)\). When \(\underline{H}(f) =\overline{H}(f)=H(f)\) the boundary condition f is resolutive, meaning that H(f) is a generalized solution of the Dirichlet problem. Wiener had already shown that fH(f)(x) is a Radon measure H x . This Radon measure is nothing but the functional representation of the measure. In 1945 Marcel Brelot considered the compactified projective space of a real vector space of arbitrary finite dimension, and redefined the ramified harmonic measure by an extension of the previous method to the space, making use of Daniell’s integral.

  85. 85.

    CRAS (May 25, 1970).

  86. 86.

    Chapters XII–XVI, p. 340, revised edition of 1987.

  87. 87.

    An analysis of Gouy’s work and its importance for physics appeared in 1941 (Picard 1941).

  88. 88.

    See the discussion in Sect. 2.

  89. 89.

    At this time Einstein also revolutionized mechanics with his theory of special relativity and reintroduced the particle picture of light, i.e. photons and the photoelectric effect.

  90. 90.

    For more on these questions as well as a general history of Brownian motion, see Kahane (1998) and Pier (1994).

  91. 91.

    For details on this transition from Gateaux and Lévy’s works to Wiener’s, see Mazliak (2011).

  92. 92.

    Wiener, Norbert (1924) Un problème de probabilités dénombrables. Bull. Soc. Math. Fr. 52:569–578.

  93. 93.

    Lévy, Paul (1934) Les généralisations de l’espace différentiel de N. Wiener. CRAS (February 26); Lévy, Paul (1934) Sur les espaces V et W. CRAS (March 26); and Lévy, Paul (1934) Complément à l’étude des espaces V et W. CRAS (May 7).

  94. 94.

    The correspondence makes clear that when using the Borel-Cantelli lemma, Lévy always emphasized the advantage of Borel’s result over Cantelli’s in the independent case.

  95. 95.

    In his important note Slutsky, Eugène (1928) Sur les fonctionnelles éventuelles continues et dérivables dans le sens stochastique. CRAS 187:878–880, Slutsky defined and constructed “regular random functions,” i.e. the processes called second order today. He showed that a quadratic mean existed as well as an integral which he wrote as \((S)\int_{a}^{b} x_{t}\,dt\) and called the stochastic integral.

  96. 96.

    Wiener, Norbert (1933). Math. Z. 37:647–668.

  97. 97.

    Wiener, Norbert (1934) Colloq. Publ.-Am. Math. Soc. XIX. Most of this text was written with Raymond Paley who died in a skiing accident in 1933.

  98. 98.

    See Sect. I.8, p. 43 ff, Naive Stochastic Integration is Impossible in Protter (1990).

  99. 99.

    On this topic see Mazliak (2009).

  100. 100.

    According to certain accounts, including Itô’s notices of the American Mathematical Society ((1998) 45:1455), Lévy’s papers arrived via Romania.

  101. 101.

    Lévy’s American article, in which his stochastic integral is defined, is included in the bibliography of an article by Kakutani (Kakutani, Shinzo (1944) On Brownian motion in n-space. Proc. Imp. Acad. (Tokyo) (November 20)). Lévy’s results apparently arrived in Japan from the USA before Pearl Harbor.

  102. 102.

    Lévy, Paul (1934) Sur les intégrales dont les éléments sont des variables aléatoires indépendantes. Ann. Sc. Norm. Super. Pisa 3:337–366.

  103. 103.

    The notation \(\sqrt{dt}\) had in fact been introduced by Lévy in various publications and appeared in Lévy (1937) where it appears in a note to the chapter entitled Les intégrales à éléments aléatoires indépendants.

  104. 104.

    Number 157–158 of Astérisque (1988).

  105. 105.

    Bernstein, Serge (1934) Principes de la théorie des équations différentielles stochastiques. Труды Физического Математического Института Стеклова 5:95–124 and Bernstein, Serge (1938) Equations différentielles stochastiques. Hermann, Paris.

  106. 106.

    Скороход Анатолий В. (1961) Иследования по теории случайных процессов. Киевский Университет, Киев. English translation (1965): Studies in the theory of random processes. Addison-Wesley.

  107. 107.

    Lévy (1948, pp. 71–72).

  108. 108.

    Lévy, Paul (1941) Intégrales stochastiques. Bull. Soc. Math. Fr.-Sud-Est 67–74.

  109. 109.

    In his seminal article (Itô, Kyoshi (1944) Stochastic integrals. Proc. Imp. Acad. (Tokyo) 20), Itô integrates certain simple processes with respect to Brownian motion. These Riemann sums were the object of an exchange of letters between Itô and Lévy in April 1954. Itô’s construction, especially useful in the space L 2, was later employed for the development of a theory of stochastic integration with respect to martingales. See Dellacherie (1980).

References

  • Aldrich J (2007) J Électron Hist Probab Stat 3(2)

    Google Scholar 

  • Bachelier L (1900) Théorie de la spéculation. Ann Sci Éc Norm Super 17:21–86

    Google Scholar 

  • Barbut M, Mazliak L (2008) Commentary on the notes for Paul Lévy’s 1919 lectures on the probability calculus at the Ecole Polytechnique. J Électron Hist Probab Stat 4(1)

    Google Scholar 

  • Бернштейн СН (1917) Опыт аксиоматического обоснования теории вероятностей. Сообщение Харьковского Математического Общения 15

    Google Scholar 

  • Бернштейн СН (1927) Современное состояние теории вероятностей и её приложений. In: Труды всероссийского съезда математиков. pp 50–63

    Google Scholar 

  • Betti R (2010) La matematica come abitudine di pensiere. PRISTEM, Milano

    Google Scholar 

  • Blanc-Lapierre A, Fortet R (1953) Théorie des fonctions aléatoires. Masson, Paris

    Google Scholar 

  • Borel E (1972) Œuvres, Introduction et Bibliographie par M. Fréchet en 4 Tomes. CNRS, Paris

    Google Scholar 

  • Bouleau N (1986) La jonction entre la théorie du potentiel et des probabilités. Sémin Hist Math 8:43–62

    Google Scholar 

  • Bouligand G (1926) Fonctions harmoniques. Principes de Picard et de Dirichlet. Mémorial des Sciences Mathématiques, vol XI. Gauthier-Villars, Paris

    Google Scholar 

  • Brelot M (1964) Eléments de théorie classique du potentiel. Centre de documentation universitaire, Paris

    Google Scholar 

  • Bru B (1999) Borel, Lévy, Neyman, Pearson et les autres. Matapli 60:51–60

    Google Scholar 

  • Bru B (2001) Bachelier et son époque: une conversation avec Bernard Bru par Mourad Taqqu. J Soc Fr Stat 142:3–40

    Google Scholar 

  • Bru B, Bru M-F, Chung KL (2009) Borel and the St Petersburg martingale. J Électron Hist Probab Stat 5(1)

    Google Scholar 

  • Catellier R, Mazliak L (2012) The emergence of French probabilistic statistics. Borel and the Institut Henri Poincaré around the 1920s. Rev Histoire Math 18:271–335

    Google Scholar 

  • Chaumont L, Mazliak L, Yor M (2007) Some aspects of the probabilistic works. In: Charpentier E, Lesne A, Nikolski NK (eds) Kolmogorov’s heritage in mathematics. Springer, London

    Google Scholar 

  • Choquet G (1990) La vie et l’œuvre de Marcel Brelot. Sémin Hist Math 11:1–31

    Google Scholar 

  • Chung KL (1995) Green, Brown and probability. World Scientific, Singapore

    Book  Google Scholar 

  • Collective (1948) Математика в СССР за 30 лет. Государственное издание технической теоретической литературы, Москва

    Google Scholar 

  • Courtault J-M, Kabanov Y (2002) Louis Bachelier: Aux origines de la finance mathématique. Presses Univ. Franc-Comtoises, Besancon

    Google Scholar 

  • De la Pradelle A (1988) Potentiel. Encyclopedia Universalis, Paris

    Google Scholar 

  • Dellacherie C (1980) Un survol de la théorie de l’intégrale stochastique. Stoch Process Appl 10:115–144

    Article  Google Scholar 

  • Dellacherie C, Meyer P-A (1975) Probabilités et Potentiel (4 tomes, 1975–1990). Hermann, Paris

    Google Scholar 

  • Демидов СС, Левшин БВ (1999) Дело академика Н.Н. Лузина. РХГИ, Москва

    Google Scholar 

  • Демидов СС, Паршин АН, Половинкин СМ (1989) О переписке Н.Н. Лузина с П.А. Флоренским. Историческо-Математические Исследования 31:116–124

    Google Scholar 

  • Dieudonné J (1978) Abrégé d’histoire des mathématiques. Hermann, Paris

    Google Scholar 

  • Doob JL (1953) Stochastic processes. Wiley, New York

    Google Scholar 

  • Doob JL (1980) Classical potential theory and its probabilistic counterpart. Springer, New York

    Google Scholar 

  • Dugac P (2003) Les mathématiques dans la vie de leur temps, autour de la notion de limite et de voisinage. Vuibert, Paris

    Google Scholar 

  • Durand A, Mazliak L (2011) Volterra’s Prolusione as a source of Borel’s interest for probability. Centaurus 53:306–333

    Article  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie des Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 19:549–560

    Article  Google Scholar 

  • Fortet R (1948) Opinions modernes sur les fondements du Calcul des Probabilités. In: Le Lionnais F (ed) Les grands courants de la pensée mathématique. Hermann, Paris

    Google Scholar 

  • Fréchet M (1955) Les mathématiques et le concret. Presses Universitaires de France, Paris

    Google Scholar 

  • Fréchet M, Halbwachs M (1924) Le calcul des probabilités à la portée de tous. Dunod, Paris

    Google Scholar 

  • Graham LR (1993) Science in Russia and the Soviet Union. Cambridge University Press, Cambridge

    Google Scholar 

  • Guiraldencq P (1999) Emile Borel. L’espace et le temps d’une vie sur deux siècles. Librairie Blanchard, Paris

    Google Scholar 

  • Havlova V, Mazliak L, Šišma P (2005) Le début des relations mathématiques franco-tchécoslovaques vu à travers la correspondance Fréchet-Hostinský. J Électron Hist Probab Stat 1(1)

    Google Scholar 

  • Hawkins T (1970) Lebesgue’s theory of integration. Chelsea, New York

    Google Scholar 

  • Itô K, Mc Kean HP Jr (1965) Diffusion processes and their sample paths. Springer, New York

    Book  Google Scholar 

  • Kahane J-P (1998) Le Mouvement Brownien, Matériaux pour l’histoire des mathématiques au XXème siècle. Société Mathématique de France, Paris

    Google Scholar 

  • Kakutani S (1944a) On Brownian motion in n-space. Proc Imp Acad (Tokyo) 20:648–652

    Article  Google Scholar 

  • Kakutani S (1944b) Two-dimensional Brownian motion. Proc Imp Acad (Tokyo) 20:706–714

    Article  Google Scholar 

  • Хинчин АЯ (1926) Идеи интуиционизма и борьба за предмет в современной математике. Вестник Коммунистической Академии 16:184-192

    Google Scholar 

  • Колмогоров АН (1925) О принципе tertium non datur. Математический Сборник

    Google Scholar 

  • Колмогоров АН (1933) Grundbegriffe der Warscheinlichkeitsrechnung. Springer, Berlin

    Google Scholar 

  • Колмогоров АН (1947) Роль русской науки в развитии теории вероятностией. Ученные Записки МГУ 91

    Google Scholar 

  • Lévy P (1911) Les équations intégro-différentielles définissant des fonctions de ligne. Thèse de la Faculté des sciences, Paris

    Google Scholar 

  • Lévy P (1922) Leçons d’Analyse Fonctionnelle. Gauthier-Villars, Paris

    Google Scholar 

  • Lévy P (1925) Calcul des probabilités. Gauthier-Villars, Paris

    Google Scholar 

  • Lévy P (1937) Théorie de l’Addition des Variables aléatoires. Gauthier-Villars, Paris

    Google Scholar 

  • Lévy P (1940) Le mouvement brownien plan. Am J Math 62:487–550

    Article  Google Scholar 

  • Lévy P (1948) Processus stochastiques et Mouvement brownien. Gauthier-Villars, Paris

    Google Scholar 

  • Lévy P (1970) Quelques aspects de la pensée d’un mathématicien. Blanchard, Paris

    Google Scholar 

  • Locker B (2001) Paul Lévy: la période de guerre. Thèse, Université Paris V

    Google Scholar 

  • Loève M (1973) Paul Lévy (1886–1971). Ann Probab 1:1–18

    Article  Google Scholar 

  • Maashal M (1999) Bourbaki, une secte de mathématiciens. Pour la Science, Paris

    Google Scholar 

  • Mandelbrot B (1975) Les objets fractals. Flammarion, Paris

    Google Scholar 

  • Maz’ja V, Shaposhnikova T (1998) Jacques Hadamard: a universal mathematician. Am Math Soc, Providence

    Google Scholar 

  • Mazliak L (2007) On the exchanges between Wolfgang Doeblin and Bohuslav Hostinský. Rev Histoire Math 13:155–180

    Google Scholar 

  • Mazliak L (2009) How Paul Lévy saw Jean Ville and martingales. J Électron Hist Probab Stat 5(1)

    Google Scholar 

  • Mazliak L (2011) The ghosts of the ecole normale, life, death and destiny of René Gateaux (to appear). http://arxiv.org/abs/math/0701490

  • Mazliak L (2014) Poincaré’s odds. In: Duplantier B, Rivasseau V (eds) ‘Poincaré, 1912–2012’, Poincaré seminar XVI, 24 November 2012. Progress in mathematical physics. Birkhäuser, Basel

    Google Scholar 

  • Mazliak L, Shafer G (2011) What does the arrest and release of Emile Borel and his colleagues in 1941 tell us about the German Occupation of France? Sci Context 24:587–623

    Article  Google Scholar 

  • Mazliak L, Tazzioli R (2009) Mathematicians at war. Springer, Dordrecht

    Book  Google Scholar 

  • Nevanlinna R (1936) Eindeutige analytische Funktionen. Springer, Berlin

    Google Scholar 

  • Perrin J (1912) Les atomes. Félix Alcan, Paris

    Google Scholar 

  • Petrovski IG (1933) Über das Irrfahrtproblem. Math Ann 109:425–444

    Google Scholar 

  • Petrovski IG (1935) Zür ersten Randvertaufgabe der wärmeleitungsgleischung. Compos Math 1:383–419

    Google Scholar 

  • Picard E (1941) La vie et l’œuvre de Paul Villard et de Georges Gouy. Mém Acad Sci Paris 63:21–24

    Google Scholar 

  • Pier J-P (1994) Developments of mathematics 1900–1950. Birkhaüser, Basel

    Google Scholar 

  • Protter P (1990) Stochastic integration and differential equations. Springer, New York

    Book  Google Scholar 

  • Seneta E, Markov AA (2001). In: Heyde CC, Seneta E (eds) Statisticians of the centuries. Springer, New York

    Google Scholar 

  • Shiryaev AN (1989) Kolmogorov: life and creative activities. Ann Probab 17(3):866–944

    Article  Google Scholar 

  • Слуцкий ЕЕ (1912) Теория корреляции и элементы учения о кривых распределения. Известия Киевского Коммерческого Института

    Google Scholar 

  • Taton R (1961) Histoire générale des Sciences. La science contemporaine (tomes III-1 et III-2; 1961–1964). Presses Universitaires de France, Paris

    Google Scholar 

  • Вавилов С (1946) Советская наука на новом этапе. Издательство Академия Наук, СССР

    Google Scholar 

  • Von Plato J (1994) Creating modern probability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vucinich A (1999) Mathematics and dialectics in the Soviet Union: the pre-Stalin period. Hist Math 26:107–124

    Article  Google Scholar 

  • Wiener N (1923) Differential space. J Math Phys 58:131–174

    Google Scholar 

  • Юшкевич АА (1968) История математики в России до 1917 года. Гл. 19: Теория вероятностей. Наука, Москва

    Google Scholar 

  • Žust M (2002) À la recherche de la vérité vivante. L’expérience religieuse de Pavel A Florenskij (1882–1937). Липа, Роме

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Barbut, M., Locker, B., Mazliak, L. (2014). Introduction to the Correspondence. In: Paul Lévy and Maurice Fréchet. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, London. https://doi.org/10.1007/978-1-4471-5619-2_1

Download citation

Publish with us

Policies and ethics