Thermochemistry of Thoria-based Fuel and Fission Products Interactions

Part of the Green Energy and Technology book series (GREEN)


Thermochemical studies on fuel and fission products have significantly contributed to our understanding of the chemical behavior of nuclear fuels during normal operation and in possible accident situations. These studies help in modeling of the operating fuel materials and can predict the fuel performance. An understanding of the vaporization behavior of fuels and fission products is essential for estimating the redistribution of various elements in the steep temperature gradients that exist across the fuel pellets. The buildup of fission product elements influence the change of thermodynamic potentials of oxygen, carbon, or nitrogen in oxide, carbide, or nitride fuels. The change in oxygen potential in an oxide fuel element affects the chemical constitution of the fuel. The oxygen potential of the fuel at different oxygen to metal ratio is the key parameter in understanding the oxidation behavior and the resultant chemistry of the fission products inside the oxide fuels. The thoria-based fuels with low urania content exhibits a very fast growth of the potential at the onset of hyperstoichiometry, while that of pure urania exhibits a better buffering action against the increase in the potential. In order to understand the oxygen redistribution among fission products and clad, knowledge of the oxygen potentials of their metal/metal oxide systems and chemical transport property of the oxide fuel for oxygen should be known. The thermodynamic properties of the possible chemical states of alkali and alkaline earth fission products and their relative stabilities as thorates, zirconates, iodides, tellurides, uranates, molybdites, molybdates, etc. also influence the distribution of oxygen among the fission products. A review of thermochemical properties of possible binary and ternary oxides resulting from the fuel-fission products’ interactions which influence the fuel performance will be presented considering the oxygen transport and other kinetic aspects.


Fission Product Perovskite Phase Oxygen Potential Rare Earth Fuel Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bailly H, Menessier D, Prunier C (1999) The nuclear fuel of pressurized water reactors and fast reactors-design and behavior. Intercept Ltd., ParisGoogle Scholar
  2. 2.
    Ali(Basu) M, Mishra M, Bharadwaj SR, Das D (2010) Thermodynamic and transport properties of thoria–urania fuel of advanced heavy water reactor. J Nucl Mater 403:204–215. doi: 10.1016/j.jnucmat.2010.01.009 CrossRefGoogle Scholar
  3. 3.
    Matzke Hj (1992) Diffusion processes in nuclear fuels. In: Agarwala RP (ed) Diffusion processes in nuclear materials, Elsevier, North HollandGoogle Scholar
  4. 4.
    Brunn H, Hoppe R (1977) Über ordungsvarianten des NaCl-Typs. Neuekubische forman von NaMO2 (M = Sc, Y, Dy, Tm, Yb, Lu), K2MO3, Rb2MO3 (M = Ce, Pr, Th) und Cs2ThO3. Z.Anorg. Allg Chem 430:144–154. doi: 10.1002/zaac.19774300114 CrossRefGoogle Scholar
  5. 5.
    Pies W, Weiss A (1977): e256, XVI.4.1 Oxo-compounds of thorium (oxothorates), XVI.4.2 oxo-compounds of protactinium (oxoprotactinates). In: Hellwege K-H, Hellwege AM (eds). Springer materials—the Landolt-Börnstein database ( doi: 10.1007/10201569_16
  6. 6.
    Pies W, Weiss A (1977): f797, XIX.2.1 simple oxo-compounds of molybdenum (oxomolybdates). In: Hellwege, K.-H., Hellwege, A.M. (ed.). In: Hellwege K-H, Hellwege AM (eds). Springer materials—The Landolt-Börnstein database ( doi: 10.1007/10201577_18
  7. 7.
    Kaczorowski D (2004): Ternary actinide pnictides and chalcogenides containing s and p electron elements. In Wijn HPJ (ed) Springer materials—the Landolt-Börnstein database ( DOI:  10.1007/10838073_10
  8. 8.
    López ML, Viega ML, Jerez A, Pico C (1992) Crystal and X-ray powder diffraction data for mixed oxides MTe2O6 (M = Ce, Th). Powder Diffr 7:32CrossRefGoogle Scholar
  9. 9.
    Olander D (2009) Nuclear fuels: present and future. J Nucl Mater 389:1–22CrossRefGoogle Scholar
  10. 10.
    Hofmann P, Spino J (1985) Conditions under which cd can cause scc failure of zircaloy tubing. J Nucl Mater 127:205–220CrossRefGoogle Scholar
  11. 11.
    Schram RPC (2005) Analysis of the oxygen potential of Th1−yUyO1+x. J Nucl Mater 344:223–229. doi: 10.1016/j.jnucmat.2005.04.046 CrossRefGoogle Scholar
  12. 12.
    Cubicciotti D, Sanecki JE (1978) Characterization of deposits on inside surfaces of LWR cladding. J Nucl Mater 78:96–111CrossRefGoogle Scholar
  13. 13.
    Ugajin M, Shiratori T, Shiba K (1979) Chemical form of the solid fission products in (Th, U)O2 simulating high burnup. J Nucl Mater 84:26–38CrossRefGoogle Scholar
  14. 14.
    Kinoshita H, Uno M, Yamanaka S (2004) Stability evaluation of fluorite structure phases in ZrO2–MO2 (M = Th, U, Pu, Ce) systems by thermodynamic modeling. J Alloy Comp 370:25–30CrossRefGoogle Scholar
  15. 15.
    Holleck H, Wagner W (1968) Oxyde, Nitrures et Carbures Ternaires de U–Ce–Zr.Thermodyn Nucl Mater 1967(IAEA Vienna 1968):667–681Google Scholar
  16. 16.
    Ugajin M, Shiba K (1980) The chemical state of burnup-simulated (Th, U)O2 at high oxygen potential. J Nucl Mater 91:227–230CrossRefGoogle Scholar
  17. 17.
    Sibieude F, Foex M (1975) Phases et transitions de phases a haute temperature observees dan les systemes ThO2–Ln2O3 (Ln = lanthanide et yttrium). J Nucl Mater 56:229–238CrossRefGoogle Scholar
  18. 18.
    Kellar C, Berndt U, Engerer H, Leitner L (1972) Phasengleichgewichte in den systemen thoriumoxid-lanthanidenoxide. J Solid State Chem 4:453–465CrossRefGoogle Scholar
  19. 19.
    Cordfunke EHP, Konings RJM (1990) Thermochemical data for reactor materials and fission products. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Mishra R, Ali (Basu) M, Bharadwaj SR, Kerkar AS, Das D, Dharwadkar SR (1999) Thermodynamic stability of barium thorate from a Knudsen effusion study. J Alloys Comp 290:97–102CrossRefGoogle Scholar
  21. 21.
    Bharadwaj SR, Mishra R, Ali (Basu) M, Das D, Kerkar AS, Dharwadkar SR (1999) Gibbs energy of formation of barium thorate by reactive carrier gas technique. J Nucl Mater 275:201–205CrossRefGoogle Scholar
  22. 22.
    Ali (Basu) M, Mishra R, Kerkar AS, Bharadwaj SR, Das D (2001) Gibbs energy of formation of Ba(OH)2 vapor species using the transpiration technique. J Nucl Mater 289:243–246CrossRefGoogle Scholar
  23. 23.
    Ali (Basu) M, Mishra R, Bharadwaj SR, Kerkar AS, Dharwadkar SR, Das D (2001) Thermodynamic stability of SrThO3. J Nucl Mater 299:165–170CrossRefGoogle Scholar
  24. 24.
    Prasad R, Dash S, Parida SC, Singh Z, Venugopal V (2003) Thermodynamic studies on SrThO3(s). J Nucl Mater 312:1–9CrossRefGoogle Scholar
  25. 25.
    Zharkova LA, Barancheeva NG (1964). In: Dash S, Singh Z, Prasad R, Sood DD (1993) (eds) The standard molar Gibbs free energy of formation of BaMoO3(s). J Nucl Mater 207:350–352Google Scholar
  26. 26.
    Agarwal R, Singh Z, Venugopal V (1999) Calorimetric investigations of SrMoO3 and BaMoO3 compounds. J Alloys Compd 282:231–235CrossRefGoogle Scholar
  27. 27.
    Shirsat AN, Kaimal KNG, Bharadwaj SR, Das D (2004) Thermodynamic stability of SrCeO3. J Solid State Chem 177:2007–2013CrossRefGoogle Scholar
  28. 28.
    Goudiakas J, Haire RG, Fuger J (1990) Thermodynamics of lanthanide and actinide perovskite type oxides IV. Molar enthalpies of formation of MM’O3 (M = Ba or Sr, M’ = Ce, Tb, Am). J Chem Thermodyn 22:577–587CrossRefGoogle Scholar
  29. 29.
    Cordfunke EHP, Booij AS, Huntelaar ME (1998) Thermochemical properties of BaCeO3(s) and SrCeO3(s) from T = (5 to 1500 K). J Chem Thermodyn 30:437–447CrossRefGoogle Scholar
  30. 30.
    Fava J, Flem GL, Devalette M, Rabardel L, Coutures JP, Foex M, Hagenmuller P (1971) Mise au Point D’un four de Haute Température –Application a L’étude des systems ThO2–SrO et ThO2–BaO. Rev Int Hautes Temper Et Refract 8:305–310Google Scholar
  31. 31.
    McIvar EJ (1966) Unit cell size of solid solutions of uranium dioxide and fission product oxides. Report AERE-M-1612Google Scholar
  32. 32.
    O’Hare PAG, Boerio J, Hoekstra HR (1976) Thermochemistry of uranium compounds VIII. Standard enthalpies of formation at 298.15 of the uranates of calcium (CaUO4) and barium (BaUO4). Thermodynamics of the behavior of barium in nuclear fuels. J Chem Thermodyn 8:845–855CrossRefGoogle Scholar
  33. 33.
    Subsri R, Mallika C, Mathews T, Sastry VS, Sreedharan OM (2003) Solubility studies, thermodynamics and electrical conductivity in Th1−xSrxO2 system. J Nucl Mater 312:249–256CrossRefGoogle Scholar
  34. 34.
    C. Keller (1976) Ternary and polynary oxides of thorium. Gmelin Handbuch der Anorganischen Chemie, Thorium, Teil C2. Springer, BerlinGoogle Scholar
  35. 35.
    Kleykamp H (1985) The chemical state of the fission products in oxide fuels. J Nucl Mater 131:221–246CrossRefGoogle Scholar
  36. 36.
    Desai KH, Grimes RW, Parfitt D, Wiss T, Uffelen PV (2009) Atomic-scale simulation of soluble fission products in UO2. EUR Report ISSN 1018-5593, JRC EUR 23821 ENGoogle Scholar
  37. 37.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Thermodynamic stability of perovskite and related compounds in some alkaline earth–transition metal-oxygen systems. J Solid State Chem 94:106–120CrossRefGoogle Scholar
  38. 38.
    Ali (Basu) M, Mishra R, Kerkar AS, Bharadwaj SR, Das D, Dharwadkar SR (2000) Vaporization behavior and Gibbs energy of formation of Cs2ThO3. J Nucl Mater 282:261–263CrossRefGoogle Scholar
  39. 39.
    Ali (Basu) M, Mishra R, Bharadwaj SR, Kerkar AS, Kaimal KNG, Das D (2001) Thermodynamic stability of Cs2ZrO3 by Knudsen effusion technique. J Alloys Comp 314:96–99CrossRefGoogle Scholar
  40. 40.
    Ali (Basu) M, Shirsat AN, Kumar SC, Bharadwaj SR, Das D (2003) Vaporization behavior and Gibbs energy of formation of Rb2ThO3. J Nucl Mater 323:68–71CrossRefGoogle Scholar
  41. 41.
    Barin I (1995) Thermochemical data of pure substance, 3rd edn. VCH, WeinheimCrossRefGoogle Scholar
  42. 42.
    Berman R M (1976) Fission product distribution in oxide fuels.WAPD-TM-1236Google Scholar
  43. 43.
    Kleykamp H, Paschoal JOA, Pejsa R, Thümmler F (1985) Composition and structure of fission product precipitates in irradiated oxide fuels: Correlation with phase studies in the Mo–Ru–Rh–Pd and BaO–UO2–ZrO2–MoO2 systems. J Nucl Mater 130:426–433CrossRefGoogle Scholar
  44. 44.
    Cordfunke EHP, Booij AS, Smit-Groen V, van Vlaanderen P (1997) Structural and thermodynamic characterization of the perovskite—related Ba1 + yUO3 + x and (Ba, Sr)1 + yUO3 + x phases. J Solid State Chem 131:341–349CrossRefGoogle Scholar
  45. 45.
    Nakajima K, Arai Y, Suzuki Y, Yamawaki M (1997) Vaporization behavior of SrPuO3. J Nucl Mater 248:233–237CrossRefGoogle Scholar
  46. 46.
    Dash S, Singh Z, Parida SC, Venugopal V (2005) Thermodynamic studies on Rb2ThO3(s). J Alloys Comp 398:219–227CrossRefGoogle Scholar
  47. 47.
    Cordfunke EHP, Ouweltjes W, Van Vlaanderen P (1987) The standard molar enthalpy of formation of Cs2ZrO3. J Chem Thermodyn 19:1117–1120CrossRefGoogle Scholar
  48. 48.
    Lamoreaux RH, Hildenbrand DL (1984) High temperature vaporization behavior of oxides I. Alkali metal binary oxides. J Phys Chem Ref Data 13:151–173CrossRefGoogle Scholar
  49. 49.
    Hoppe R, Seeger K (1970) Zur Kenntnis des Rb2PbO3 Typs: Über Rb2ZrO3, Rb2SnO3, Rb2TbO3. Z Anorg Allg Chem 375:264–269CrossRefGoogle Scholar
  50. 50.
    Dash S, Sood DD, Prasad R (1996) Phase diagram and thermodynamic calculations of alkali and alkaline earth metal zirconates. J Nucl Mater 228:83–116CrossRefGoogle Scholar
  51. 51.
    Villars P, Cenzual K; Gladyshevskii R, Shcherban O, Dubenskyy V, Kuprysyuk V, Savysyuk I (2010) Landolt-Börnstein—group III condensed matter, vol 43A8, p 519. Springer, Berlin. doi:  10.1007/978-3-540-70892-6_303, ISBN: 978-3-540-70891-9
  52. 52.
    Cordfunke EHP, Ouweltjes W, Prins G (1988) Standard enthalpies of formation of tellurium compounds III. Cs2TeO3, Cs2Te2O5, Cs2Te4O9, and Cs2TeO4. J Chem Thermodyn 20:569–573CrossRefGoogle Scholar
  53. 53.
    Lindemer TB, Besmann TM, Johnson C E(1981) Thermodynamic review and calculations-alkali metal oxide systems with nuclear fuels, fission products and structural materials. J Nucl Mater 100:178–226Google Scholar
  54. 54.
    Shukla NK, Prasad R, Sood DD (1993) The standard molar enthalpies of formation at the temperature T = 298.15 K of barium molybdate BaMoO4(cr) and strontium molybdate SrMoO4(cr). J Chem Thermodyn 25:429–434CrossRefGoogle Scholar
  55. 55.
    Feber RC(1977) Gas impurities in the primary coolant of high-temperature gas-cooled reactors. Los Alamos Sci Lab Report, LA-Nureg-6635Google Scholar
  56. 56.
    Tangri RP, Venugopal V, Bose DK, Sunderesan M (1989) Thermodynamics of vaporization of cesium molybdate. J Nucl Mater 167:127–130CrossRefGoogle Scholar
  57. 57.
    Johnson I (1975) Mass spectrometric study of vaporization of cesium and sodium molybdates. J Phys Chem 79:722–726CrossRefGoogle Scholar
  58. 58.
    Yamawaki M, Oka T, Yasumoto M, Sakurai H (1993) Thermodynamics of vaporization of cesium molybdate by mass spectrometry. J Nucl Mater 201:257–260CrossRefGoogle Scholar
  59. 59.
    Semenov GA, Fokina LA, Mouldagalieva RA (1994) Mass spectrometric study of vaporization of cesium tellurate and tellurite. J Nucl Mater 210:167–171CrossRefGoogle Scholar
  60. 60.
    Prussin SG, Olander DR, Lau WK, Hansson L (1988) Release of fission products (Xe, I, Te, Cs, Mo Tc) from polycrystalline UO2. J Nucl Mater 154:25–37CrossRefGoogle Scholar
  61. 61.
    Konashi K, Yamawaki M (1997) Evaluation of iodine pressure in oxide fuel pins under irradiation. J Nucl Sci Technol 29:1–10CrossRefGoogle Scholar
  62. 62.
    Götzmann O (1983) A thermodynamic assessment of in-reactor iodine SCC of Zircaloy: Remarks concerning the article by D.R. Olander(1982) J Nucl Mater 110: 343–345, J Nucl Mater 118:349–351Google Scholar
  63. 63.
    Konashi K, Siokawa Y, Kayano H, Yamawaki M (1997) Radiation effect on the state of fission product iodine. J Nucl Mater 248:220–225CrossRefGoogle Scholar
  64. 64.
    Chattopadhyay G, Juneja JM (1993) A thermodynamic database for tellurium-bearing systems relevant to nuclear technology. J Nucl Mater 202:10–28CrossRefGoogle Scholar
  65. 65.
    Mishra R, Ali M, Bharadwaj SR, Das D (2003) Gibbs energy of formation of the Rh–Te intermetallic compounds Rh3Te2 and RhTe0.9. J Nucl Mater 321:318–323. doi: 10.1016/S0022-3115(03)00301-5 CrossRefGoogle Scholar
  66. 66.
    Ali (Basu) M, Shirsat AN, Mishra R, Kerkar AS, Kumar SC, Das D (2003) Thermodynamic stability of RuTe2 solid by vapor pressure study. J Alloys Comp 352:140–142CrossRefGoogle Scholar
  67. 67.
    Stolyarova TA, Osadchii EG (2011) Enthalpies of formation of tellurides of palladies from elements. Vestnik Otdelenia nauk o Zemle RAN 3: NZ6091, doi: 10.2205/2011NZ000221
  68. 68.
    Johnson I, Johnson CE, Crouthamel CE, Seils CA (1973) Oxygen potential of irradiated urania–plutonia fuel pins. J Nucl Mater 48:21–34CrossRefGoogle Scholar
  69. 69.
    Croff AG (1983) ORIGEN-2: Versatile computer code for calculating the nuclide composition and characteristics of nuclear materials. Nucl Technol 62:335–352Google Scholar
  70. 70.
    Bramman JI, Sharpe RM, Thom D, Yates G (1968) Metallic fission product inclusions in irradiated oxide fuels. J Nucl Mater 25:201–215CrossRefGoogle Scholar
  71. 71.
    Kleykamp H (1979) The chemical state of LWR high-power rods under irradiation. J Nucl Mater 84:109–117CrossRefGoogle Scholar
  72. 72.
    Kleykamp H (1989) Constitution and thermodynamics of Mo–Ru, Mo–Pd, Ru–Pd and Mo–Ru–Pd systems. J Nucl Mater 167:49–63CrossRefGoogle Scholar
  73. 73.
    Octavio J, Paschoal A, Kleykamp H, Theummler F (1983) Phase equilibria in the quaternary Mo–Ru–Rh–Pd system. Z Metallk 74:652–664Google Scholar
  74. 74.
    Fukuzawa T, Tanaka M, Tanabe T, Imoto S (1984) Technology Report. Osaka University vol 34, p 219Google Scholar
  75. 75.
    Yamawaki M, Nagai Y, Kogai T, Kanno M (1980) Thermodyn Nucl Mater 1(IAEA, Vienna, 1980):249Google Scholar
  76. 76.
    Naito K, Tsuji T, Matsui T, Date A (1988) Chemical states, phases and vapor pressures of fission produced noble metals in the oxide fuels. J Nucl Mater 154:3–13CrossRefGoogle Scholar
  77. 77.
    Matsui T, Naito K (1989) Vaporization studies on fission produced noble metal alloys by mass-spectrometric method. Thermochim Acta 139:299–312CrossRefGoogle Scholar
  78. 78.
    Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic Press, New YorkGoogle Scholar
  79. 79.
    Edwards HS, Rosenberg AF, Bittel JT (1963) Thorium oxide-diffusion of oxygen, compatibility with borides, and feasibility of coating borides by pyrohydrolysis of metal halides. ASD-TDR-63-635Google Scholar
  80. 80.
    Bayogln AS, Lorenzelli R (1984) Oxygen diffusion in FCC fluorite type nonstoichiometric nuclear oxides MO2±x. Solid State Ionics 12:53–66CrossRefGoogle Scholar
  81. 81.
    Matsui T, Naito K (1985) Chemical diffusion coefficient of oxygen in thoria-urania mixed oxide. J Nucl Mater 135:149–154CrossRefGoogle Scholar
  82. 82.
    Mishra R, Shirsat AN, Das D(2006) Chemical diffusion of oxygen in thoria-urania solid solution. Proc Int Symp Mater Chem ISMC-06, 147–149Google Scholar
  83. 83.
    Sari C, Schumacher G (1976) Oxygen redistribution in fast reactor oxide fuel. J Nucl Mater 61:192–202CrossRefGoogle Scholar
  84. 84.
    Carslaw HS, Jaeger JC (1947) Conduction of heat in solids. Clarendon, OxfordMATHGoogle Scholar
  85. 85.
    Gulbransen EA, Andrew KF, Brassart FA (1963) Oxidation of molybdenum between 550° to 1700°C. J Electrochem Soc 110:952–959CrossRefGoogle Scholar
  86. 86.
    Giacchetti G, Sari C (1976) Behavior of Mo in mixed oxide fuel. Nucl Technol 31:62–69Google Scholar
  87. 87.
    Barlett RW (1965) Molybdenum oxidation kinetics at high temperature. J Electrochem Soc 112:744–746CrossRefGoogle Scholar
  88. 88.
    Wilson CN (1979) Oxygen transport limitation in using getters to control fuel/cladding chemical interaction. Thermodyn Nucl Mater IAEA Vienna 1980, 1:427–438Google Scholar
  89. 89.
    Goldberg I et al (1977) Fission gas release from ThO2 and ThO2–UO2 fuels. Trans Am Nucl Soc 27:308–310Google Scholar
  90. 90.
    Paschoal JOA, Kleykamp H, Thümmler F (1987) Phase equilibria in pseudoquaternary BaO–UO2–ZrO2–MoO2 system. J Nucl Mater 151:10–21CrossRefGoogle Scholar
  91. 91.
    Ryu KH, Haile SM (1999) Chemical stability and proton conductivity of doped BaCeO3- BaZrO3 solid solutions. Solid State Ionics 125:355–367CrossRefGoogle Scholar
  92. 92.
    Lutique S, Jaborsky P, Koenings RJM, Krupa JC, van Genderen ACG, van Miltenburg JC, Wastin M (2003) Low temperature heat capacity of Nd2Zr2O7 pyrochlore. J Chem Thermodyn 35:955–965CrossRefGoogle Scholar
  93. 93.
    Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties of inorganic substances, 2nd edn. Springer, BerlinGoogle Scholar
  94. 94.
    Sedmidubsky D, Benes O, Konings RJM (2005) High temperature heat capacity of Nd2Zr2O7 and La2Zr2O7 pyrochlores. J Chem Thermodyn 37:1098–1103CrossRefGoogle Scholar
  95. 95.
    Ali(Basu) M, Bharadwaj SR, Das D (2005) The standard molar enthalpy of formation of CdMoO4. J Nucl Mater 336:110–112CrossRefGoogle Scholar
  96. 96.
    Mishra R, Bharadwaj SR, Das D (2006) Determination of thermodynamic stability of CdMoO4 by knudsen effusion vapor pressure measurement method. J Therm Anal Cal 86:547–552CrossRefGoogle Scholar
  97. 97.
    Ali M, Bharadwaj SR, Mishra R, Kerkar AS, Das D (2000) The standard molar enthalpy of formation of ThMo2O8. Thermochim Acta 346:29–32CrossRefGoogle Scholar
  98. 98.
    Basu M, Mishra R, Bharadwaj SR, Kerkar AS, Dharawadkar SR (1998) Gibbs energy of formation of thorium molybdate (ThMo2O8) by the transpiration technique. J Nucl Mater 257:185–188CrossRefGoogle Scholar
  99. 99.
    Tripathi SN, Chattopadhyay G, Kerkar AS, Chandrasekharaiah MS (1985) Thermodynamic stability of UMoO6 by the transpiration method. J Am Ceram Soc 68:232–235CrossRefGoogle Scholar
  100. 100.
    Ali(Basu) M, Bharadwaj SR, Kumar SC, Das D (2005) Standard enthalpy of formation of La2Te3O9 and La2Te4O11. J Nucl Mater 347:69–72CrossRefGoogle Scholar
  101. 101.
    Ali(Basu) M, Mishra R, Kerkar AS, Bharadwaj SR, Das D (2002) Gibbs energy of formation of solid Ni3TeO6 from transpiration studies. J Nucl Mater 301:183–186CrossRefGoogle Scholar
  102. 102.
    Basu M, Mishra R, Bharadwaj SR, Namboodiri PN, Tripathi SN, Kerkar AS, Dharwadkar SR (1999) The standard molar enthalpies of formation of UTeO5 and UTe3O9. J Chem Thermodyn 31:1259–1263CrossRefGoogle Scholar
  103. 103.
    Mishra R, Namboodiri PN, Tripathi SN, Bharadwaj SR, Dharwadkar SR (1998) Vaporization behaviour and Gibbs’ energy of formation of UTeO5 and UTe3O9 by transpiration. J Nucl Mater 256:139–144CrossRefGoogle Scholar
  104. 104.
    Krishnan A, Ramarao GA, Mudher KDS, Venugopal V (1998) Thermal stability and vapour pressure studies on UTe3O9(s) and UTeO5(s). J Nucl Mater 254:49–54CrossRefGoogle Scholar
  105. 105.
    Wirth BD, Olander DR (2005) Section 9: Fission product behaviour. Nuclear Engineering Department, University of California, Berkeley: NE120Google Scholar
  106. 106.
    Inoue T, Hj Matzke (1981) Temperature dependence of Hertzian indentation fracture surface energy of ThO2. J Am Ceram Soc 64:355–360CrossRefGoogle Scholar
  107. 107.
    Hall ROA, Mortimer NJ, Mortimer DA (1987) Surface energy measurements on UO2—a critical review. J Nucl Mater 148:237–256CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations