Clustering II: Topics in Clustering

Chapter

Abstract

Conventional competitive learning-based clustering algorithms like \(C\)-means and LVQ are plagued by a severe initialization problem [57, 106]. If the initial values of the prototypes are not in the convex hull formed by the input data, clustering may not produce meaningful results.

Keywords

Entropy Covariance Hull Agglomeration Halite 

References

  1. 1.
    Aggarwal, C. C., Procopiuc, C., Wolf, J. L., Yu, P. S., & Park, J. S. (1999). Fast algorithms for projected clustering. In Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 61–72).Google Scholar
  2. 2.
    Aggarwal, C. C., & Yu, P. S. (2000). Finding generalized projected clusters in high dimensional spaces. In Proceedings of SIGMOD Conference (pp. 70–81).Google Scholar
  3. 3.
    Aggarwal, C. C. (2004). A human-computer interactive method for projected clustering. IEEE Transactions on Knowledge and Data Engineering, 16(4), 448–460.Google Scholar
  4. 4.
    Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2005). On high dimensional projected clustering of data streams. Data Mining and Knowledge Discovery, 10, 251–273.MathSciNetGoogle Scholar
  5. 5.
    Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 94–105).Google Scholar
  6. 6.
    Ahalt, S. C., Krishnamurty, A. K., Chen, P., & Melton, D. E. (1990). Competitive learning algorithms for vector quantization. Neural Networks, 3(3), 277–290.Google Scholar
  7. 7.
    Bacciu, D., & Starita, A. (2008). Competitive repetition suppression (CoRe) clustering: a biologically inspired learning model with application to robust clustering. IEEE Transactions on Neural Networks, 19(11), 1922–1941.Google Scholar
  8. 8.
    Ball, G. H., & Hall, D. J. (1967). A clustering technique for summarizing multivariate data. Behavioral Sciences, 12, 153–155.Google Scholar
  9. 9.
    Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with Bregman divergences. Journal of Machine Learning Research, 6, 1705–1749.MATHMathSciNetGoogle Scholar
  10. 10.
    Baraldi, A., & Blonda, P. (1999). A survey of fuzzy clustering algorithms for pattern recognition-Part II. IEEE Transactions on Systems, Man, and Cybernetics Part B, 29(6), 786–801.Google Scholar
  11. 11.
    Bauer, H.-U., Der, R., & Herrmann, M. (1996). Controlling the magnification factor of self-organizing feature maps. Neural Computing, 8, 757–771.Google Scholar
  12. 12.
    Basu, S., Davidson, I., & Wagstaff, K. L. (2008). Constrained clustering: advances in algorithms, theory, and applications. New York: Chapman & Hall/CRC.Google Scholar
  13. 13.
    Bay, S. D., & Schwabacher, M. (2003). Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 29–38).Google Scholar
  14. 14.
    Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J. F., Vincent, P., & Ouimet, M. (2004). Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16(10), 2197–2219.Google Scholar
  15. 15.
    Bezdek, J. C., Coray, C., Gunderson, R., & Watson, J. (1981). Detection and characterization of cluster substructure: Fuzzy \(c\)-varieties and convex combinations thereof. SIAM Journal of Applied Mathematics, 40(2), 358–372.MATHMathSciNetGoogle Scholar
  16. 16.
    Bezdek, J. C., Hathaway, R. J., & Pal, N. R. (1995). Norm-induced shell-prototypes (NIPS) clustering. Neural, Parallel & Scientific Computations, 3, 431–450.Google Scholar
  17. 17.
    Bouchachia, A., & Pedrycz, W. (2006). Enhancement of fuzzy clustering by mechanisms of partial supervision. Fuzzy Sets and Systems, 157, 1733–1759.MATHMathSciNetGoogle Scholar
  18. 18.
    Bouguessa, M., & Wang, S. (2009). Mining projected clusters in high-dimensional spaces. IEEE Transactions on Knowledge and Data Engineering, 21(4), 507–522.Google Scholar
  19. 19.
    Bradley, P. S., Mangasarian, O. L., & Steet, W. N. (1996). Clustering via concave minimization. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 368–374). Cambridge, MA: MIT Press.Google Scholar
  20. 20.
    Bruske, J., & Sommer, G. (1995). Dynamic cell structure. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 497–504). Cambridge, MA: MIT Press.Google Scholar
  21. 21.
    Bubeck, S., & von Luxburg, U. (2009). Nearest neighbor clustering: A baseline method for consistent clustering with arbitrary objective functions. Journal of Machine Learning Research, 10, 657–698.MATHGoogle Scholar
  22. 22.
    Campello, R. J. G. B., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157, 2858–2875.MATHMathSciNetGoogle Scholar
  23. 23.
    Chatzis, S., & Varvarigou, T. (2009). Factor analysis latent subspace modeling and robust fuzzy clustering using t-distributions. IEEE Transactions on Fuzzy Systems, 17(3), 505–517.Google Scholar
  24. 24.
    Chen, X., Liu, W., Qiu, H., & Lai, J. (2011). APSCAN: A parameter free algorithm for clustering. Pattern Recognition Letters, 32(7), 973–986.Google Scholar
  25. 25.
    Cheung, Y. M. (2003). \(k*\)-Means: A new generalized k-means clustering algorithm. Pattern Recognition Letters, 24, 2883–2893.MATHGoogle Scholar
  26. 26.
    Cheung, Y. M. (2005). On rival penalization controlled competitive learning for clustering with automatic cluster number selection. IEEE Transactions on Knowledge and Data Engineering, 17(11), 1583–1588.Google Scholar
  27. 27.
    Cheung, Y. M., & Law, L. T. (2007). Rival-model penalized self-organizing map. IEEE Transactions on Neural Networks, 18(1), 289–295.Google Scholar
  28. 28.
    Choi, D. I., & Park, S. H. (1994). Self-creating and organizing neural network. IEEE Transactions on Neural Networks, 5(4), 561–575.MathSciNetGoogle Scholar
  29. 29.
    Choy, C. S. T., & Siu, W. C. (1998). A class of competitive learning models which avoids neuron underutilization problem. IEEE Transactions on Neural Networks, 9(6), 1258–1269.Google Scholar
  30. 30.
    Chung, F. L., & Lee, T. (1994). Fuzzy competitive learning. Neural Networks, 7(3), 539–551.Google Scholar
  31. 31.
    Cordeiro, R. L. F., Traina, A. J. M., Faloutsos, C., & Traina, C, Jr. (2013). Halite: Fast and scalable multiresolution local-correlation clustering. IEEE Transactions on Knowledge and Data Engineering, 25(2), 387–401.Google Scholar
  32. 32.
    Dave, R. N. (1990). Fuzzy shell-clustering and applications to circle detection in digital images. International Journal of General Systems, 16(4), 343–355.MathSciNetGoogle Scholar
  33. 33.
    Dave, R. N. (1991). Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657–664.Google Scholar
  34. 34.
    Dave, R. N., & Bhaswan, K. (1992). Adaptive fuzzy \(C\)-shells clustering and detection of ellipse. IEEE Transactions on Neural Networks, 3(5), 643–662.Google Scholar
  35. 35.
    Dave, R. N., & Krishnapuram, R. (1997). Robust clustering methods: a unified view. IEEE Transactions on Fuzzy Systems, 5(2), 270–293.Google Scholar
  36. 36.
    Dave, R. N., & Sen, S. (2002). Robust fuzzy clustering of relational data. IEEE Transactions on Fuzzy Systems, 10(6), 713–727.Google Scholar
  37. 37.
    Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(4), 224–227.Google Scholar
  38. 38.
    Desieno, D. (1988). Adding a conscience to competitive learning. In Proceedings of IEEE International Conference on Neural Networks (Vol. 1, pp. 117–124).Google Scholar
  39. 39.
    Dhillon, I., Mallela, S., & Kumar, R. (2003). A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research, 3(4), 1265–1287.MATHMathSciNetGoogle Scholar
  40. 40.
    Dhillon, I. S., Mallela, S., & Modha, D. S. (2003). Information-theoretic co-clustering. In Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 89–98).Google Scholar
  41. 41.
    Dhillon, I. S., Guan, Y., & Kulis, B. (2007). Weighted graph cuts without eigenvectors: A multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 1944–1957.Google Scholar
  42. 42.
    El-Sonbaty, Y., & Ismail, M. (1998). Fuzzy clustering for symbolic data. IEEE Transactions on Fuzzy Systems, 6(2), 195–204.Google Scholar
  43. 43.
    Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 226–231). Portland, OR.Google Scholar
  44. 44.
    Forti, A., & Foresti, G. L. (2006). Growing hierarchical tree SOM: An unsupervised neural network with dynamic topology. Neural Networks, 19, 1568–1580.MATHGoogle Scholar
  45. 45.
    Franti, P., Virmajoki, O., & Hautamaki, V. (2006). Fast agglomerative clustering using a \(k\)-nearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1875–1881.Google Scholar
  46. 46.
    Frey, B. J., & Dueck, D. (2007). Clustering by passing message between data points. Science, 315, 972–976.MATHMathSciNetGoogle Scholar
  47. 47.
    Frezza-Buet, H. (2008). Following non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas network. Neurocomputing, 71, 1191–1202.Google Scholar
  48. 48.
    Frigui, H., & Krishnapuram, R. (1999). A robust competitive clustering algorithm with applications in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 450–465.Google Scholar
  49. 49.
    Fritzke, B. (1994). Growing cell structures–A self-organizing neural networks for unsupervised and supvised learning. Neural Networks, 7(9), 1441–1460.Google Scholar
  50. 50.
    Fritzke, B. (1995). A growing neural gas network learns topologies. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 625–632). Cambridge, MA: MIT Press.Google Scholar
  51. 51.
    Fritzke, B. (1995). Growing grid-A self-organizing network with constant neighborhood range and adaptation strength. Neural Processing Letters, 2(5), 9–13.Google Scholar
  52. 52.
    Fritzke, B. (1997). A self-organizing network that can follow nonstationary distributions. In W. Gerstner, A. Germond, M. Hasler & J. D. Nicoud (Eds.), Proceedings of International Conference on Artificial Neural Networks, LNCS (Vol. 1327, pp. 613–618). Lausanne, Switzerland. Berlin: Springer.Google Scholar
  53. 53.
    Gath, I., & Geva, A. B. (1989). Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 773–781.Google Scholar
  54. 54.
    Gath, I., & Hoory, D. (1995). Fuzzy clustering of elliptic ring-shaped clusters. Pattern Recognition Letters, 16, 727–741.Google Scholar
  55. 55.
    Geva, A. B. (1999). Hierarchical unsupervised fuzzy clustering. IEEE Transactions on Fuzzy Systems, 7(6), 723–733.Google Scholar
  56. 56.
    Gonzalez, J., Rojas, I., Pomares, H., Ortega, J., & Prieto, A. (2002). A new clustering technique for function approximation. IEEE Transactions on Neural Networks, 13(1), 132–142.Google Scholar
  57. 57.
    Grossberg, S. (1987). Competitive learning: From iterative activation to adaptive resonance. Cognitive science, 11, 23–63.Google Scholar
  58. 58.
    Guha, S., Rastogi, R., & Shim, K. (2001). CURE: An efficient clustering algorithm for large databases. Information Systems, 26(1), 35–58.MATHGoogle Scholar
  59. 59.
    Gustafson, D. E., & Kessel, W. (1979). Fuzzy clustering with a fuzzy covariance matrix. In Proceedings of the IEEE Conference on Decision and Control (pp. 761–766). San Diego, CA.Google Scholar
  60. 60.
    Hamker, F. H. (2001). Life-long learning cell structures: Continuously learning without catastrophic interference. Neural Networks, 14, 551–573.Google Scholar
  61. 61.
    Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of American Statistical Association, 67(337), 123–129.Google Scholar
  62. 62.
    Hartigan, J. A. (1975). Clustering algorithms. New York: Wiley.MATHGoogle Scholar
  63. 63.
    Hathaway, R. J., & Bezdek, J. C. (1994). NERF \(c\)-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition, 27, 429–437.Google Scholar
  64. 64.
    Hathaway, R. J., & Bezdek, J. C. (2000). Generalized fuzzy \(c\)-means clustering strategies using \(L_p\) norm distances. IEEE Transactions on Fuzzy Systems, 8(5), 576–582.Google Scholar
  65. 65.
    Hathaway, R. J., & Bezdek, J. C. (2001). Fuzzy \(c\)-means clustering of incomplete data. IEEE Transactions on Systems, Man, and Cybernetics Part B, 31(5), 735–744.Google Scholar
  66. 66.
    Hathaway, R. J., & Hu, Y. (2009). Density-weighted fuzzy \(c\)-means clustering. IEEE Transactions on Fuzzy Systems, 17(1), 243–252.Google Scholar
  67. 67.
    He, J., Tan, A. H., & Tan, C. L. (2004). Modified ART 2A growing network capable of generating a fixed number of nodes. IEEE Transactions on Fuzzy Systems, 15(3), 728–737.Google Scholar
  68. 68.
    Hein, M., Audibert, J.-Y., & von Luxburg, U. (2007). Graph Laplacians and their convergence on random neighborhood graphs. Journal of Machine Learning Research, 8, 1325–1370.MATHGoogle Scholar
  69. 69.
    Hoeppner, F. (1997). Fuzzy shell clustering algorithms in image processing: Fuzzy \(C\)-rectangular and 2-rectangular shells. IEEE Transactions on Fuzzy Systems, 5(4), 599–613.Google Scholar
  70. 70.
    Honda, K., Notsu, A., & Ichihashi, H. (2010). Fuzzy PCA-guided robust \(k\)-means clustering. IEEE Transactions on Fuzzy Systems, 18(1), 67–79.Google Scholar
  71. 71.
    Hsu, A., & Halgamuge, S. K. (2008). Class structure visualization with semi-supervised growing self-organizing maps. Neurocomputing, 71, 3124–3130.Google Scholar
  72. 72.
    Huang, J. Z., Ng, M. K., Rong, H., & Li, Z. (2005). Automated variable weighting in \(k\)-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 1–12.MATHGoogle Scholar
  73. 73.
    Huang, Z. (1998). Extensions to the \(k\)-means algorithm for clustering large datasets with categorical values. Data Mining and Knowledge Discovery, 2, 283–304.Google Scholar
  74. 74.
    Jing, L., Ng, M. K., & Huang, J. Z. (2007). An entropy weighting \(k\)-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineering, 19(8), 1026–1041.Google Scholar
  75. 75.
    Karypis, G., Han, E. H., & Kumar, V. (1999). Chameleon: Hierarchical clustering using dynamic modeling cover feature. Computer, 12, 68–75.Google Scholar
  76. 76.
    Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.Google Scholar
  77. 77.
    Kaymak, U., & Setnes, M. (2002). Fuzzy clustering with volume prototypes and adaptive cluster merging. IEEE Transactions on Fuzzy Systems, 10(6), 705–712.Google Scholar
  78. 78.
    Kersten, P. R. (1999). Fuzzy order statistics and their application to fuzzy clustering. IEEE Transactions on Fuzzy Systems, 7(6), 708–712.MathSciNetGoogle Scholar
  79. 79.
    King, B. (1967). Step-wise clustering procedures. Journal of American Statistical Association, 69, 86–101.Google Scholar
  80. 80.
    Krishnapuram, R., Nasraoui, O., & Frigui, H. (1992). The fuzzy \(c\)-spherical shells algorithm: A new approach. IEEE Transactions on Neural Networks, 3(5), 663–671.Google Scholar
  81. 81.
    Krishnapuram, R., & Keller, J. M. (1993). A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1(2), 98–110.Google Scholar
  82. 82.
    Krishnapuram, R., Frigui, H., & Nasraoui, O. (1995). Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation: Part 1 & 2. IEEE Transactions on Fuzzy Systems, 3(1), 44–60.Google Scholar
  83. 83.
    Kruskal, J. (1956). On the shortest spanning subtree and the traveling salesman problem. In Proceedings of the American Mathematical Society (pp. 48–50).Google Scholar
  84. 84.
    Landis, F., Ott, T., & Stoop, R. (2010). Hebbian self-organizing integrate-and-fire networks for data clustering. Neural Computation, 22, 273–288.Google Scholar
  85. 85.
    Leski, J. M. (2003). Generalized weighted conditional fuzzy clustering. IEEE Transactions on Fuzzy Systems, 11(6), 709–715.Google Scholar
  86. 86.
    Lin, C.-R., & Chen, M.-S. (2005). Combining partitional and hierarchical algorithms for robust and efficient data clustering with cohesion self-merging. IEEE Transactions on Knowledge and Data Engineering, 17(2), 145–159.Google Scholar
  87. 87.
    Liu, Z. Q., Glickman, M., & Zhang, Y. J. (2000). Soft-competitive learning paradigms. In Z. Q. Liu & S. Miyamoto (Eds.), Soft computing and human-centered machines (pp. 131–161). New York: Springer.Google Scholar
  88. 88.
    Luk, A., & Lien, S. (1998). Learning with lotto-type competition. In Proceedings of International Joint Conference on Neural Networks (Vol. 2, pp. 1143–1146). Anchorage, AK.Google Scholar
  89. 89.
    Luk, A., & Lien, S. (1999). Lotto-type competitive learning and its stability. In Proceedings of International Joint Conference on Neural Networks (Vol. 2, pp. 1425–1428). Washington, DC, USA.Google Scholar
  90. 90.
    Ma, J., & Wang, T. (2006). A cost-function approach to rival penalized competitive learning (RPCL). IEEE Transactions on Systems, Man, Cybernetics Part B, 36(4), 722–737.Google Scholar
  91. 91.
    Maji, P., & Pal, S. K. (2007). Rough set based generalized fuzzy \(C\)-means algorithm and quantitative indices. IEEE Transactions on Systems, Man, Cybernetics Part B, 37(6), 1529–1540.Google Scholar
  92. 92.
    Man, Y., & Gath, I. (1994). Detection and separation of ring-shaped clusters using fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(8), 855–861.Google Scholar
  93. 93.
    Mao, J., & Jain, A. K. (1996). A self-organizing network for hyperellipsoidal clustering (HEC). IEEE Transactions on Neural Networks, 7(1), 16–29.Google Scholar
  94. 94.
    Marshland, S., Shapiro, J., & Nehmzow, U. (2002). A self-organizing network that grows when required. Neural Networks, 15, 1041–1058.Google Scholar
  95. 95.
    Ng, R. T., & Han, J. (1994). Efficient and effective clustering methods for spatial data mining. In Proceedings of the 20th International Conference on Very Large Data Bases (pp. 144–155). Santiago, Chile.Google Scholar
  96. 96.
    Ng, R. T., & Han, J. (2002). CLARANS: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering, 14(5), 1003–1016.Google Scholar
  97. 97.
    Ning, H., Xu, W., Chi, Y., Gong, Y., & Huang, T. S. (2010). Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition, 43(1), 113–127.MATHGoogle Scholar
  98. 98.
    Ontrup, J., & Ritter, H. (2006). Large-scale data exploration with the hierarchically growing hyperbolic SOM. Neural Networks, 19, 751–761.MATHGoogle Scholar
  99. 99.
    Pal, N. R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13(4), 517–530.MathSciNetGoogle Scholar
  100. 100.
    Pedrycz, W. (1998). Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Transactions on Neural Networks, 9(4), 601–612.Google Scholar
  101. 101.
    Prim, R. (1957). Shortest connection networks and some generalization. Bell System Technical Journal, 36, 1389–1401.Google Scholar
  102. 102.
    Procopiuc, C. M., Jones, M., Agarwal, P. K., & Murali, T. M. (2002). A Monte Carlo algorithm for fast projective clustering. In Proceedings of ACM SIGMOD (pp. 418–427).Google Scholar
  103. 103.
    Rizzo, R., & Chella, A. (2006). A comparison between habituation and conscience mechanism in self-organizing maps. IEEE Transactions on Neural Networks, 17(3), 807–810.Google Scholar
  104. 104.
    Rodrigues, P. P., Gama, J., & Pedroso, J. P. (2008). Hierarchical clustering of time series data streams. IEEE Transactions on Knowledge and Data Engineering, 20(5), 615–627.Google Scholar
  105. 105.
    Rose, K., Gurewitz, E., & Fox, G. C. (1990). A deterministic annealing approach to clustering. Pattern Recognition Letters, 11(9), 589–594.MATHGoogle Scholar
  106. 106.
    Rumelhart, D. E., & Zipser, D. (1985). Feature discovery by competititve learning. Cognitive Sciences, 9, 75–112.Google Scholar
  107. 107.
    Runkler, T. A., & Bezdek, J. C. (1999). Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Transactions on Fuzzy Systems, 7(4), 377–393.Google Scholar
  108. 108.
    Runkler, T. A., & Palm, R. W. (1996). Identification of nonlinear systems using regular fuzzy \(c\)-elliptotype clustering. In Proceedings of the 5th IEEE Conference on Fuzzy Systems (pp. 1026–1030).Google Scholar
  109. 109.
    Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2, 169–194.Google Scholar
  110. 110.
    Shen, F., & Hasegawa, O. (2006). An adaptive incremental LBG for vector quantization. Neural Networks, 19, 694–704.MATHGoogle Scholar
  111. 111.
    Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy. London: Freeman.MATHGoogle Scholar
  112. 112.
    Song, Q., Yang, X., Soh, Y. C., & Wang, Z. M. (2010). An information-theoretic fuzzy \(C\)-spherical shells clustering algorithm. Fuzzy Sets and Systems, 161, 1755–1773.MATHMathSciNetGoogle Scholar
  113. 113.
    Staiano, A., Tagliaferri, R., & Pedrycz, W. (2006). Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing, 69, 1570–1581.Google Scholar
  114. 114.
    Su, M. C., & Chou, C. H. (2001). A modified version of the \(K\)-means algorithm with a distance based on cluster symmetry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 674–680.Google Scholar
  115. 115.
    Su, M. C., & Liu, Y. C. (2005). A new approach to clustering data with arbitrary shapes. Pattern Recognition, 38, 1887–1901.MATHGoogle Scholar
  116. 116.
    Thulasiraman, K., & Swamy, M. N. S. (1992). Graphs: Theory and algorithms. New York: Wiley.MATHGoogle Scholar
  117. 117.
    Tishby, N., Pereira, F., & Bialek, W. (1999). The information bottleneck method. In Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing (pp. 368–377).Google Scholar
  118. 118.
    Tjhi, W.-C., & Chen, L. (2009). Dual fuzzy-possibilistic coclustering for categorization of documents. IEEE Transactions on Fuzzy Systems, 17(3), 532–543.Google Scholar
  119. 119.
    Tseng, V. S., & Kao, C.-P. (2007). A novel similarity-based fuzzy clustering algorithm by integrating PCM and mountain method. IEEE Transactions on Fuzzy Systems, 15(6), 1188–1196.Google Scholar
  120. 120.
    Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3), 586–600.Google Scholar
  121. 121.
    Wang, J. H., & Rau, J. D. (2001). VQ-agglomeration: A novel approach to clustering. IEE Proceedings - Vision, Image and Signal Processing, 148(1), 36–44.Google Scholar
  122. 122.
    Wang, W., & Zhang, Y. (2007). On fuzzy cluster validity indices. Fuzzy Sets and Systems, 158, 2095–2117.MATHMathSciNetGoogle Scholar
  123. 123.
    Wang, X., Wang, X., & Wilkes, D. M. (2009). A divide-and-conquer approach for minimum spanning tree-based clustering. IEEE Transactions on Knowledge and Data Engineering, 21(7), 945–958.Google Scholar
  124. 124.
    Wang, C.-D., & Lai, J.-H. (2011). Energy based competitive learning. Neurocomputing, 74, 2265–2275.MathSciNetGoogle Scholar
  125. 125.
    Wu, K.-L., Yang, M.-S., & Hsieh, J.-N. (2009). Robust cluster validity indexes. Pattern Recognition, 42, 2541–2550.MATHGoogle Scholar
  126. 126.
    Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841–847.Google Scholar
  127. 127.
    Xu, L., Krzyzak, A., & Oja, E. (1993). Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Transactions on Neural Networks, 4(4), 636–649.Google Scholar
  128. 128.
    Xu, L. (2007). A unified perspective and new results on RHT computing, mixture based learning and multi-learner based problem solving. Pattern Recognition, 40, 2129–2153.MATHGoogle Scholar
  129. 129.
    Yair, E., Zeger, K., & Gersho, A. (1992). Competitive learning and soft competition for vector quantizer design. IEEE Transactions on Signal Processing, 40(2), 294–309.Google Scholar
  130. 130.
    Yang, M.-S., Chiang, Y.-H., Chen, C.-C., & Lai, C.-Y. (2008). A fuzzy \(k\)-partitions model for categorical data and its comparison to the GoM model. Fuzzy Sets and Systems, 159, 390–405.MATHMathSciNetGoogle Scholar
  131. 131.
    Yang, T. N., & Wang, S. D. (2004). Competitive algorithms for the clustering of noisy data. Fuzzy Sets and Systems, 141, 281–299.MATHMathSciNetGoogle Scholar
  132. 132.
    Yip, K. Y., Cheung, D. W., & Ng, M. K. (2004). HARP: A practical projected clustering algorithm. IEEE Transactions on Knowledge and Data Engineering, 16(11), 1387–1397.Google Scholar
  133. 133.
    Yiu, M. L., & Mamoulis, N. (2005). Iterative projected clustering by subspace mining. IEEE Transactions on Knowledge and Data Engineering, 17(2), 176–189.Google Scholar
  134. 134.
    Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, 20(1), 68–86.MATHGoogle Scholar
  135. 135.
    Zalik, K. R. (2010). Cluster validity index for estimation of fuzzy clusters of different sizes and densities. Pattern Recognition, 43(10), 3374–3390.MATHGoogle Scholar
  136. 136.
    Zheng, G. L., & Billings, S. A. (1999). An enhanced sequential fuzzy clustering algorithm. International Journal of Systems Science, 30(3), 295–307.MATHGoogle Scholar
  137. 137.
    Zhang, J.-S., & Leung, Y.-W. (2004). Improved possibilistic c-means clustering algorithms. IEEE Transactions on Fuzzy Systems, 12(2), 209–217.MathSciNetGoogle Scholar
  138. 138.
    Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very large databases. In Proceedings of ACM SIGMOD Conference on Management of Data (pp. 103–114). Montreal, Canada.Google Scholar
  139. 139.
    Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1, 141–182.Google Scholar
  140. 140.
    Zhang, Y. J., & Liu, Z. Q. (2002). Self-splitting competitive learning: A new on-line clustering paradigm. IEEE Transactions on Neural Networks, 13(2), 369–380.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Enjoyor LabsEnjoyor Inc.HangzhouChina
  2. 2.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations