Introduction to Fuzzy Sets and Logic

Chapter

Abstract

In many soft sciences (e.g., psychology, sociology, ethology), scientists provide verbal descriptions and explanations of various phenomena based on observations.

References

  1. 1.
    Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. Artificial Intelligence Community, 7(1), 39–59.Google Scholar
  2. 2.
    Bede, B., & Rudas, I. J. (2011). Approximation properties of fuzzy transforms. Fuzzy Sets and Systems, 180(1), 20–40.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Buckley, J. J. (1989). Fuzzy complex numbers. Fuzzy Sets and Systems, 33, 333–345.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Buckley, J. J. (1993). Sugeno type controllers are universal controllers. Fuzzy Sets and Systems, 53, 299–304.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Buckley, J. J., Hayashi, Y., & Czogala, E. (1993). On the equivalence of neural nets and fuzzy expert systems. Fuzzy Sets and Systems, 53, 129–134.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Buckley, J. J., & Eslami, E. (2002). An introduction to fuzzy logic and fuzzy sets. Heidelberg, Germany: Physica.Google Scholar
  7. 7.
    Davis, J. G., & Ganeshan, S. (2009). Aversion to loss and information overload: An experimental investigation. In Proceedings of the International Conference on Information System, Phoenix, AZ.Google Scholar
  8. 8.
    Dick, S. (2005). Toward complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 13(3), 405–414.CrossRefGoogle Scholar
  9. 9.
    Dubois, D., Esteva, F., Garcia, P., Godo, L., de Mantaras, R. L., & Prade, H. (1997). Fuzzy modelling of case-based reasoning and decision. In D. B. Leake & E. Plaza (Eds.), Case-based reasoning research and development (ICCBR-97), LNAI 1266 (pp. 599–610). Berlin: Springer.Google Scholar
  10. 10.
    Ferrari-Trecate, G., & Rovatti, R. (2002). Fuzzy systems with overlapping Gaussian concepts: Approximation properties in Sobolev norms. Fuzzy Sets and Systems, 130, 137–145.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Figueiredo, M., Gomides, F., Rocha, A., & Yager, R. (1993). Comparison of Yager’s level set method for fuzzy logic control with Mamdani and Larsen methods. IEEE Transactions on Fuzzy Systems, 2, 156–159.CrossRefGoogle Scholar
  12. 12.
    Finnie, G., & Sun, Z. (2003). A logical foundation for the case-based reasoning cycle. International Journal of Intelligent Systems, 18, 367–382.CrossRefMATHGoogle Scholar
  13. 13.
    Jang, J. S. R., & Sun, C. I. (1993). Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Transactions on Neural Networks, 4(1), 156–159.CrossRefGoogle Scholar
  14. 14.
    Leake, D. (1996). Case-based reasoning: experiences, lessons, and future direction. Menlo Park, CA: AAAI Press/MIT Press.Google Scholar
  15. 15.
    Li, H. X., & Chen, C. L. P. (2000). The equivalence between fuzzy logic systems and feedforward neural networks. IEEE Transactions on Neural Networks, 11(2), 356–365.CrossRefGoogle Scholar
  16. 16.
    Karnik, N. N., & Mendel, J. M. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6), 643–658.CrossRefGoogle Scholar
  17. 17.
    Kosko, B. (1992). Fuzzy system as universal approximators. In Proceedings of the IEEE International Conference on Fuzzy System (pp. 1153–1162), San Diego, CA.Google Scholar
  18. 18.
    Kosko, B. (1997). Fuzzy engineering. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  19. 19.
    Kreinovich, V., Nguyen, H. T., & Yam, Y. (2000). Fuzzy systems are universal approximators for a smooth function and its derivatives. International Journal of Intelligent Systems, 15, 565–574.CrossRefMATHGoogle Scholar
  20. 20.
    Mamdani, E. H. (1974). Application of fuzzy algorithms for control of a simple dynamic plant. Proceedings of the IEEE, 12(1), 1585–1588.Google Scholar
  21. 21.
    Mantas, C. J., & Puche, J. M. (2008). Artificial neural networks are zero-order TSK fuzzy systems. IEEE Transactions on Fuzzy Systems, 16(3), 630–643.CrossRefGoogle Scholar
  22. 22.
    Mas, M., Monserrat, M., Torrens, J., & Trillas, E. (2007). A survey on fuzzy implication functions. IEEE Transactions on Fuzzy Systems, 15(6), 1107–1121.CrossRefGoogle Scholar
  23. 23.
    Mendel, J. M., Liu, F., & Zhai, D. (2009). \(\alpha \)-plane representation for type-2 fuzzy sets: Theory and applications. IEEE Transactions on Fuzzy Systems, 17(5), 1189–1207.CrossRefGoogle Scholar
  24. 24.
    Mitra, S., & Hayashi, Y. (2000). Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transactions on Neural Networks, 11(3), 748–768.CrossRefGoogle Scholar
  25. 25.
    Molodtsov, D. (1999). Soft set theoryfirst results. Computers and Mathematics with Applications, 37, 19–31.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Mondal, B., & Raha, S. (2011). Similarity-based inverse approximate reasoning. IEEE Transactions on Fuzzy Systems, 19(6), 1058–1071.CrossRefGoogle Scholar
  27. 27.
    Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11, 341–356.CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data. Dordrecht: Kluwer.CrossRefMATHGoogle Scholar
  29. 29.
    Pedrycz, W. (1998). Shadowed sets: representing and processing fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics Part B, 28, 103–109.Google Scholar
  30. 30.
    Pedrycz, W. (2009). From fuzzy sets to shadowed sets: interpretation and computing. International Journal of Intelligent Systems, 24, 48–61.CrossRefMATHGoogle Scholar
  31. 31.
    Perfilieva, I. (2006). Fuzzy transforms: Theory and applications. Fuzzy Sets and Systems, 157, 993–1023.CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Peters, G. (2011). Granular box regression. IEEE Transaction on Fuzzy Systems, 19(6), 1141–1152.CrossRefGoogle Scholar
  33. 33.
    Plaza, E., Esteva, F., Garcia, P., Godo, L., & de Mantaras, R. L. (1996). A logical approach to case-based reasoning using fuzzy similarity relations. Information Sciences, 106, 105–122.CrossRefGoogle Scholar
  34. 34.
    Ramot, D., Friedman, M., Langholz, G., & Kandel, A. (2003). Complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 11(4), 450–461.CrossRefGoogle Scholar
  35. 35.
    Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002). Complex fuzzy sets. IEEE Transactions on Fuzzy Systems, 10(2), 171–186.CrossRefGoogle Scholar
  36. 36.
    Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132.CrossRefMATHGoogle Scholar
  37. 37.
    Tanaka, H. (1987). Fuzzy data analysis by possibilistic linear models. Fuzzy Sets and Systems, 24, 363–375.CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Tanaka, K., & Sugeno, M. (1992). Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, 45, 135–150.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Tsang, E. C. C., Chen, D., Yeung, D. S., Wang, X.-Z., & Lee, J. W. T. (2008). Attributes reduction using fuzzy rough sets. IEEE Transactions on Fuzzy Systems, 16(5), 1130–1141.CrossRefGoogle Scholar
  40. 40.
    Wagner, C., & Hagras, H. (2010). Toward general type-2 fuzzy logic systems based on \(z\)Slices. IEEE Transactions on Fuzzy Systems, 18(4), 637–660.CrossRefGoogle Scholar
  41. 41.
    Wang, L. X. (1992). Fuzzy systems are universal approximators. In Proceedings of the IEEE International Conference on Fuzzy Systems (pp. 1163–1170), San  Diego, CA.Google Scholar
  42. 42.
    Wang, S., & Lu, H. (2003). Fuzzy system and CMAC network with B-spline membership/basis functions are smooth approximators. Soft Computing, 7, 566–573.CrossRefMATHGoogle Scholar
  43. 43.
    Yen, J. (1999). Fuzzy logic: A modern perspective. IEEE Transactions on Knowledge and Data Engineering, 11(1), 153–165.CrossRefGoogle Scholar
  44. 44.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.Google Scholar
  45. 45.
    Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I, II, III. Information Sciences, 8, 199–249, 301–357.Google Scholar
  46. 46.
    Zadeh, L. A. (1975). Information Sciences, 9, 43–80.Google Scholar
  47. 47.
    Zadeh, L. A. (1978). Fuzzy sets as a basis for theory of possibility. Fuzzy Sets and Systems, 1, 3–28.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Enjoyor LabsEnjoyor Inc.HangzhouChina
  2. 2.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations