Iterative Compression, and Measure and Conquer, for Minimization Problems

  • Rodney G. Downey
  • Michael R. Fellows
Part of the Texts in Computer Science book series (TCS)


We introduce the technique of iterative compression. We illustrate how this can be combined with analytical techniques such as measure and conquer.


Vertex Cover Reduction Rule Gray Code Bipartite Match Parametric Tractability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 76.
    H. Bodlaender, A cubic kernel for feedback vertex set, in Proceedings of 24th Annual Symposium on Theoretical Aspects of Computer Science, STACS 2007, Aachen, Germany, February 22–24, 2007, ed. by W. Thomas, P. Weil. LNCS, vol. 4393 (Springer, Berlin, 2007), pp. 320–331 Google Scholar
  2. 130.
    Y. Cao, J. Chen, Y. Liu, On feedback vertex set: new measure and new structures, in Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm Theory, ed. by H. Kaplan (Springer, Berlin, 2010), pp. 93–104 Google Scholar
  3. 141.
    J. Chen, F. Fomin, Y. Liu, S. Lu, Y. Villanger, Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 150.
    J. Chen, Y. Liu, S. Lu, B. O’Sullivan, I. Razgon, A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5), 1–19 (2008) MathSciNetGoogle Scholar
  5. 198.
    M. Davis, H. Putnam, A computing procedure for quantification theory. J. ACM 7, 201–215 (1960) MathSciNetzbMATHGoogle Scholar
  6. 204.
    F. Dehne, M. Fellows, F. Rosamond, P. Shaw, Greedy localization, iterative compression, and modeled crown reductions: new FPT techniques, an improved algorithm for set splitting, and a novel 2k kernelization for vertex cover, in Parameterized and Exact Computation, Proceedings of First International Workshop, IWPEC 2004, Bergen, Norway, September 14–17, 2004, ed. by R. Downey, M. Fellows, F. Dehne. LNCS, vol. 3162 (Springer, Berlin, 2004), pp. 271–281 Google Scholar
  7. 247.
    R. Downey, M. Fellows, Parameterized Complexity. Monographs in Computer Science (Springer, Berlin, 1999) CrossRefGoogle Scholar
  8. 316.
    F. Fomin, F. Grandoni, D. Kratsch, Measure and conquer: domination—a case study, in Proceedings of 32nd International Colloquium on Automata, Languages and Programming (ICALP 2005), Lisbon, Portugal, July 11–15, 2005, ed. by L. Caires, G. Italiano, L. Monteiro, C. Palamidessi, M. Yung. LNCS, vol. 3580 (Springer, Berlin, 2005), pp. 191–203 CrossRefGoogle Scholar
  9. 317.
    F. Fomin, F. Grandoni, D. Kratsch, Measure and conquer: a simple O(20.288n) independent set algorithm, in Proceedings of the Seventeenth Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22–26, 2006 (ACM, New York, 2006), pp. 18–25 Google Scholar
  10. 318.
    F. Fomin, F. Grandoni, D. Kratsch, Solving connected dominating set faster than 2n, in FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science, Proceedings of 26th International Conference, Kolkata, India, December 13–15, 2006, ed. by S. Arun-Kumar, N. Garg. LNCS, vol. 4337 (Springer, Berlin, 2006), pp. 152–163 CrossRefGoogle Scholar
  11. 319.
    F. Fomin, F. Grandoni, A. Pyatkin, A. Stepanov, Bounding the number of minimal dominating sets: a measure and conquer approach, in Algorithms and Computation: Proceedings of 16th International Symposium, ISAAC 2005, Sanya, Hainan, China, December 19–21, 2005, ed. by X. Deng, D. Du. LNCS, vol. 3827 (Springer, Berlin, 2005), pp. 573–582 CrossRefGoogle Scholar
  12. 334.
    H. Gabow, M. Stallmann, An augmenting path algorithm for linear matroid parity. Combinatorica 6(2), 123–150 (1986) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 363.
    D.J. Guan, Generalized Gray codes with applications. Proc. Natl. Sci. Counc., Repub. China 22, 841–848 (1998) Google Scholar
  14. 365.
    J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, S. Wernicke, Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006) CrossRefzbMATHGoogle Scholar
  15. 366.
    J. Guo, H. Moser, R. Niedermeier, Iterative compression for exactly solving NP-hard minimization problems, in Algorithmics of Large and Complex Networks, ed. by J. Lerner, D. Wagner, K. Zweig. LNCS, vol. 5515 (Springer, Berlin, 2009), pp. 65–80 CrossRefGoogle Scholar
  16. 370.
    G. Gutin, E. Kim, M. Lampis, V. Mitsou, Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 404.
    F. Hüffner, Algorithm engineering for optimal graph bipartization, in WEA 2005: 4th International Workshop on Efficient and Experimental Algorithms, Santorini Island, Greece, May 10–13, 2005, ed. by S. Nikoletseas. LNCS, vol. 3503 (Springer, Berlin, 2005), pp. 240–252 Google Scholar
  18. 405.
    F. Hüffner, C. Komusiewicz, H. Moser, R. Niedermeier, Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47, 196–217 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 414.
    Y. Iwata, A faster algorithm for dominating set analyzed by the potential method, in Parameterized and Exact Computation, 6th International Symposium, IPEC ’11, Revised Selected Papers, Saarbrücken, Germany, September 6–8, 2011, ed. by D. Marx, P. Rossmanith. LNCS, vol. 7112 (Springer, Berlin, 2011), pp. 41–54 CrossRefGoogle Scholar
  20. 431.
    R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, ed. by R. Miller, J. Thatcher (Plenum, New York, 1972), pp. 45–68 Google Scholar
  21. 467.
    D. Kratsch, M. Liedloff, An exact algorithm for the minimum dominating clique problem, in Parameterized and Exact Computation, Proceedings of Second International Workshop, IWPEC ’06, Zürich, Switzerland, September 13–15, 2006, ed. by H. Bodlaender, M. Langston. LNCS, vol. 4169 (Springer, Berlin, 2006), pp. 78–89 Google Scholar
  22. 497.
    D. Lokshtanov, N.S. Narayanaswamy, V. Raman, M.S. Ramanujan, S. Saurabh, Faster parameterized algorithms using linear programming, arXiv:1203.0833 [cs.DS] (2012)
  23. 547.
    R. Niedermeier, P. Rossmanith, A general method to speed up fixed-parameter-tractable algorithms. Inf. Process. Lett. 73(3–4), 125–129 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 574.
    I. Razgon, B. O’Sullivan, Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 576.
    B. Reed, K. Smith, A. Vetta, Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 653.
    J. van Rooij, H. Bodlaender, Design by measure and conquer: a faster algorithm for dominating set, in Proceedings of 25th Annual Symposium on Theoretical Aspects on Computer Science, STACS 2008, Bordeau, France, February 21–23, 2008, ed. by S. Albers, P. Weil. Leibniz International Proceedings in Informatics, vol. 1 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2008), pp. 657–668 Google Scholar
  27. 663.
    S. Wernicke, On the algorithmic tractability of single nucleotide polymorphism (SNP) analysis and related problems, PhD thesis, Wilhelm-Schickard-Institute für Informatik, Universität Tübingen, 2003 Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rodney G. Downey
    • 1
  • Michael R. Fellows
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations