Advertisement

Research Horizons

  • Rodney G. Downey
  • Michael R. Fellows
Part of the Texts in Computer Science book series (TCS)

Abstract

In this final chapter, we describe what we think are some of the most important open problems of the field. In the first book, Downey and Fellows (Parameterized Complexity. Monographs in Computer Science, Springer, Berlin, 1999), we offered two lists of problems, 18 altogether, that we then thought significant and especially challenging. As this book goes to press, 12 of these have been resolved! Many of the solutions to these problems involved significant new ideas and advances in the field.

Keywords

Planar Graph Polynomial Kernel Winning Strategy Parity Game Computable Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 20.
    M. Ajtai, The shortest vector problem in 2 is NP-hard for randomized reductions, in Proceedings of 30th ACM Symposium on Theory of Computing (STOC ’98), Dallas, TX, USA, May 23–26, 1998, ed. by J. Vitter (ACM, New York, 1998), pp. 10–19 Google Scholar
  2. 67.
    H. Björklund, S. Sandberg, S. Vorobyov, On fixed-parameter complexity of infinite games, in The Nordic Workshop on Programming Theory (NWPT’03), Åbo Akademi University, Turku, Finland, October 29–31, 2003, ed. by K. Sere, M. Waldén, A. Karlsson (Åbo Akademi, Department of Computer Science, Turku, 2003), pp. 62–64 Google Scholar
  3. 68.
    J. Blasiok, M. Kaminski, Chain minors are FPT, in Proceedings of IPEC 2013 (2013) Google Scholar
  4. 150.
    J. Chen, Y. Liu, S. Lu, B. O’Sullivan, I. Razgon, A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5), 1–19 (2008) MathSciNetGoogle Scholar
  5. 189.
    M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk, The planar directed k-Vertex-Disjoint Paths problem is fixed-parameter tractable, arXiv:1304.4207
  6. 215.
    E. Demaine, M. Hajiaghayi, K.-i. Kawarabayashi, Contraction decomposition in H-minor-free graphs and algorithmic applications, in Proceedings of 43rd ACM Symposium on Theory of Computing (STOC ’11), San Jose, CA, USA, June 6–June 8, 2011, ed. by L. Fortnow, S. Vadhan (ACM, New York, 2011), pp. 441–450 Google Scholar
  7. 244.
    R. Downey, M. Fellows, Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 247.
    R. Downey, M. Fellows, Parameterized Complexity. Monographs in Computer Science (Springer, Berlin, 1999) CrossRefGoogle Scholar
  9. 259.
    R. Downey, M. Fellows, A. Vardy, G. Whittle, The parametrized complexity of some fundamental problems in coding theory. SIAM J. Comput. 29(2), 545–570 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 269.
    T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24, 1278–1304 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 271.
    K. Elbassioni, M. Hagen, I. Rauf, Some fixed-parameter tractable classes of hypergraph duality and related problems, in Parameterized and Exact Computation, 3rd International Workshop, IWPEC ’08, Revised Selected Papers, Victoria, Canada, May 14–16, 2008, ed. by M. Grohe, R. Niedermeier. LNCS, vol. 5018 (Springer, Berlin, 2008), pp. 91–102 CrossRefGoogle Scholar
  12. 294.
    M. Fellows, N. Koblitz, Fixed-parameter complexity and cryptography, in Proceedings of the 10th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 10), Puerto Rico, May 1993, ed. by G. Cohen, T. Mora, O. Moreno. LNCS, vol. 673 (Springer, Berlin, 1993), pp. 121–131 CrossRefGoogle Scholar
  13. 315.
    F. Fomin, P. Golovach, D. Thilikos, Contraction bidimensionality: the accurate picture, in Algorithms—ESA 2009: Proceedings of 17th Annual European Symposium, Copenhagen, Denmark, September 7–9, 2009, ed. by A. Fiat, P. Sanders. LNCS, vol. 5757 (Springer, Berlin, 2009), pp. 706–717 CrossRefGoogle Scholar
  14. 321.
    F. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, Fast local search algorithm for weighted feedback arc set in tournaments, in Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11–15, 2010 (AAAI Press, Menlo Park, 2010) Google Scholar
  15. 327.
    F. Fomina, D. Marx, FPT suspects and tough customers: open problems of Downey and Fellows, in The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, ed. by H. Bodlaender, R. Downey, F. Fomin, D. Marx. LNCS, vol. 7370 (Springer, Berlin, 2012), pp. 457–468 CrossRefGoogle Scholar
  16. 342.
    J. Geelen, B. Gerards, G. Whittle, Towards a structure theory for matrices and matroids, in International Congress of Mathematicians, Madrid, August 22–30, 2006, vol. III, ed. by M. Sanz-Solé, J. Soria, J. Varona, J. Verdera (Eur. Math. Soc., Zürich, 2006), pp. 827–842 Google Scholar
  17. 343.
    J. Geelen, B. Gerards, G. Whittle, Rota’s conjecture, to appear. Result announced at the British Combinatorial Conference, 2013 Google Scholar
  18. 346.
    I. Giotis, V. Guruswami, Correlation clustering with a fixed number of clusters. Theory Comput. 2, 249–266 (2006) MathSciNetCrossRefGoogle Scholar
  19. 364.
    S. Guillemot, D. Marx, Finding small patterns in permutations in linear time, arXiv:1307.3073
  20. 369.
    J. Gustedt, Well quasi ordering finite posets and formal languages. J. Comb. Theory, Ser. B 65(1), 111–124 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 382.
    S. Hartung, R. Niedermeier, Incremental list coloring of graphs, parameterized by conservation. Theor. Comput. Sci. 494, 86–98 (2013) MathSciNetCrossRefGoogle Scholar
  22. 387.
    R. Hemmecke, S. Onn, L. Romanchuk, N-fold integer programming in cubic time (hence multiway tables are fixed-parameter tractable) (with Raymond Hemmecke and Lyubov Romanchuk). Math. Program. 137, 325–341 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 397.
    P. Hliněný, G. Whittle, Matroid tree-width. Eur. J. Comb. 27, 1117–1128 (2006) CrossRefzbMATHGoogle Scholar
  24. 502.
    E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25, 42–65 (1982) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 514.
    D. Marx, Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008) CrossRefGoogle Scholar
  26. 515.
    D. Marx, Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett. 36(1), 31–36 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 551.
    S. Oum, P. Seymour, Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96, 514–528 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 607.
    A. Scott, On the parameterized complexity of finding short winning strategies in combinatorial games, PhD thesis, University of Victoria, 2009 Google Scholar
  29. 634.
    S. Szeider, The parameterized complexity of k-flip local search for sat and max sat. Discrete Optim. 8(1), 139–145 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 657.
    A. Vardy, Algorithmic complexity in coding theory and the minimum distance problem, in Proceedings of 29th ACM Symposium on Theory of Computing (STOC ’97), Baltimore, MD, USA, May 4–6, 1997, ed. by F. Leighton, P. Shor (ACM, New York, 1997), pp. 92–109 Google Scholar
  31. 658.
    D. Vertigan, G. Whittle, Recognising polymatroids associated with hypergraphs. Comb. Probab. Comput. 2, 519–530 (1993) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rodney G. Downey
    • 1
  • Michael R. Fellows
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations