Parameterized Approximation

  • Rodney G. Downey
  • Michael R. Fellows
Part of the Texts in Computer Science book series (TCS)


This chapter introduces the idea of parameterized approximation. This is a method that either gives a “no” guarantee or an approximate solution. That is, we either see a certificate that there is no solution of size k or we find an approximate solution of size g(k). This chapter provides applications of parameterized approximation, as well as methods of demonstrating complete inapproximability, meaning that there is no approximate solution for any computable function g(k).


Online Algorithm Vertex Cover Disjoint Cycle Path Decomposition Complete Binary Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    K. Abrahamson, R. Downey, M. Fellows, Fixed-parameter tractability and completeness. IV. On completeness for W[P] and PSPACE analogues. Ann. Pure Appl. Log. 73(3), 235–276 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 27.
    M. Alekhnovich, A. Razborov, Resolution is not automatizable unless W[P] is tractable, in Proceedings of 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001 (IEEE Comput. Soc., Los Alamitos, 2001), pp. 210–219 Google Scholar
  3. 28.
    B. Allen, M. Steel, Subtree transfer operations and their induced metrics on evolutionary trees. Ann. Comb. 5, 1–13 (2000) MathSciNetCrossRefGoogle Scholar
  4. 65.
    D. Bienstock, N. Robertson, P. Seymour, R. Thomas, Quickly excluding a forest. J. Comb. Theory, Ser. B 52, 274–283 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 87.
    H. Bodlaender, M. Fellows, M. Hallett, Beyond NP-completeness for problems of bounded width (extended abstract): hardness for the w hierarchy, in Proceedings of 26th ACM Symposium on Theory of Computing (STOC ’94), Montréal, Québec, Canada, May 23–May 25, 1994, ed. by F. Leighton, M. Goodrich (ACM, New York, 1994), pp. 449–458. Google Scholar
  6. 110.
    L. Brankovic, H. Fernau, Combining two worlds: parameterized approximation for Vertex Cover, in Algorithms and Computation: Proceedings of 21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15–17, 2010, ed. by O. Cheong, K.-Y. Chwa, K. Park. LNCS, vol. 6507 (Springer, Berlin, 2010), pp. 390–402 CrossRefGoogle Scholar
  7. 125.
    L. Cai, X. Huang, Fixed-parameter approximation: conceptual framework and approximability results, in Parameterized and Exact Computation. Proceedings of Second International Workshop, IWPEC ’06, Zürich, Switzerland, September 13–15, 2006, ed. by H. Bodlaender, M. Langston. LNCS, vol. 4169 (Springer, Berlin, 2006), pp. 96–108 CrossRefGoogle Scholar
  8. 134.
    K. Cattell, M. Dinneen, M. Fellows, A simple linear-time algorithm for finding path-decompositions of small width. Inf. Process. Lett. 57, 197–203 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 156.
    Y. Chen, M. Grohe, M. Grüber, On parameterized approximability, in Parameterized and Exact Computation, Proceedings of Second International Workshop, IWPEC ’06, Zürich, Switzerland, September 13–15, 2006, ed. by H. Bodlaender, M. Langston. LNCS, vol. 4169 (Springer, Berlin, 2006), pp. 109–120 CrossRefGoogle Scholar
  10. 160.
    M. Chrobak, M. Ślusarek, On some packing problems related to dynamic storage allocation. RAIRO Theor. Inform. Appl. 22, 487–499 (1988) zbMATHGoogle Scholar
  11. 247.
    R. Downey, M. Fellows, Parameterized Complexity. Monographs in Computer Science (Springer, Berlin, 1999) CrossRefGoogle Scholar
  12. 251.
    R. Downey, M. Fellows, C. McCartin, Parameterized approximation problems, in Parameterized and Exact Computation, Proceedings of Second International Workshop, IWPEC ’06, Zürich, Switzerland, September 13–15, 2006, ed. by H. Bodlaender, M. Langston. LNCS, vol. 4169 (Springer, Berlin, 2006), pp. 121–129 CrossRefGoogle Scholar
  13. 252.
    R. Downey, M. Fellows, C. McCartin, F. Rosamond, Parameterized approximation of dominating set problems. Inf. Process. Lett. 109(1), 68–70 (2008) MathSciNetCrossRefGoogle Scholar
  14. 260.
    R. Downey, C. McCartin, Online problems, pathwidth, and persistence, in Parameterized and Exact Computation, Proceedings of First International Workshop, IWPEC 2004, Bergen, Norway, September 14–17, 2004, ed. by R. Downey, M. Fellows, F. Dehne. LNCS, vol. 3162 (Springer, Berlin, 2004), pp. 13–24 Google Scholar
  15. 268.
    K. Eickmeyer, M. Grohe, M. Grüber, Approximation of natural W[P]-complete minimisation problems is hard, in Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, CCC 2008, College Park, Maryland, USA, June 23–26, 2008 (IEEE Comput. Soc., Los Alamitos, 2008), pp. 8–18 CrossRefGoogle Scholar
  16. 272.
    J.A. Ellis, I.H. Sudborough, J.S. Turner, The vertex separation and search number of a graph. Inform. Comput. 113(1), 50–79 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 308.
    P. Fishburn, Intransitive indifference in preference theory: a survey. Oper. Res. 18, 207–228 (1970) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 337.
    M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979) zbMATHGoogle Scholar
  19. 358.
    M. Grohe, M. Grüber, Parameterized approximability of the disjoint cycle problem, in Proceedings of 34th International Colloquium on Automata, Languages and Programming (ICALP 2007), Wrocław, Poland, July 9–13, 2007, ed. by L. Arge, C. Cachin, T. Jurdzinski, A. Tarlecki. LNCS, vol. 4596 (Springer, Berlin, 2007), pp. 363–374 CrossRefGoogle Scholar
  20. 377.
    M. Hallett, C. McCartin, A faster FPT algorithm for the maximum agreement forest problem. Theory Comput. Syst. 41(3), 539–550 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 412.
    S. Irani, Coloring inductive graphs on-line, in Proceedings of 31st Annual Symposium on Foundations of Computer Science, FOCS 1990, vol. II, St. Louis, Missouri, USA, October 22–24, 1990 (IEEE Comput. Soc., Los Alamitos, 1990), pp. 470–479 Google Scholar
  22. 415.
    K. Jansen, S. Kratsch, D. Marx, I. Schlotter, Bin packing with fixed number of bins revisited, in Algorithm Theory—SWAT 2010, Proceedings of 12th Scandinavian Workshop on Algorithm Theory, Bergen, Norway, June 21–23, 2010, ed. by H. Kaplan. LNCS, vol. 6139 (Springer, Berlin, 2010), pp. 260–272 Google Scholar
  23. 441.
    H. Kierstead, The linearity of first-fit colouring of interval graphs. SIAM J. Discrete Math. 1, 526–530 (1988) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 442.
    H. Kierstead, J. Qin, Colouring interval graphs with first-fit. Discrete Math. 144, 47–57 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 443.
    H. Kierstead, W. Trotter, An extremal problem in recursive combinatorics. Congr. Numer. 33, 143–153 (1981) MathSciNetGoogle Scholar
  26. 514.
    D. Marx, Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008) CrossRefGoogle Scholar
  27. 516.
    D. Marx, Completely inapproximable monotone and antimonotone parameterized problems, in Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Massachusetts, June 9–12, 2010 (IEEE Comput. Soc., Los Alamitos, 2010), pp. 181–187 CrossRefGoogle Scholar
  28. 575.
    B. Reed, Finding approximate separators and computing tree width quickly, in Proceedings of 24th ACM Symposium on Theory of Computing (STOC ’92), Victoria, British Columbia, Canada, May 4–May 6, 1992, ed. by R. Kosaraju, M. Fellows, A. Wigderson, J. Ellis (ACM, New York, 1992), pp. 221–228 Google Scholar
  29. 581.
    N. Robertson, P. Seymour, Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35, 39–61 (1983) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 621.
    D. Sleator, R. Tarjan, Amortized efficiency of list update and paging rules. Commun. ACM 28, 202–208 (1985) MathSciNetCrossRefGoogle Scholar
  31. 623.
    A. Slivkins, Parameterized tractability of edge-disjoint paths on directed acyclic graphs, in Algorithms—ESA 2003: Proceedings of 11th Annual European Symposium, Budapest, Hungary, September 2003, ed. by G.D. Battista, U. Zwick. LNCS, vol. 2832 (Springer, Berlin, 2003), pp. 483–493 Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rodney G. Downey
    • 1
  • Michael R. Fellows
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations