Kernelization Lower Bounds

  • Rodney G. Downey
  • Michael R. Fellows
Part of the Texts in Computer Science book series (TCS)


We introduce powerful new techniques to show that FPT parameterized problems do not have polynomial-sized many : 1 kernels, under standard assumptions of classical complexity theory. A new completeness program for exploring the issue for Turing kernelization is also described.


Parameterized Problem Colored Version Polynomial Kernel Polynomial Hierarchy Composition Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 15.
    L.M. Adleman, Two theorems on random polynomial time, in DBLP [566], pp. 75–83.
  2. 83.
    H. Bodlaender, R. Downey, M. Fellows, D. Hermelin, On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 91.
    H. Bodlaender, B. Jansen, S. Kratsch, Cross-composition: a new technique for kernelization lower bounds, in Proceedings of 28th International Symposium on Theoretical Aspects of Computer Science, STACS 2011, Dortmund, Germany, March 10–12, 2011, ed. by T. Schwentick, C. Dürr. Leibniz International Proceedings in Informatics, vol. 9 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2011), pp. 165–176 Google Scholar
  4. 101.
    H. Bodlaender, S. Thomassé, A. Yeo, Analysis of data reduction: transformations give evidence for non-existence of polynomial kernels, Technical Report UU-CS-2008-030, Department of Information and Computing Sciences, Utrecht University, 2008 Google Scholar
  5. 114.
    H. Buhrman, J. Hitchcock, NP-hard sets are exponentially dense unless coNP ⊆ NP/poly, in Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, CCC 2008, College Park, Maryland, USA, June 23–26, 2008 (IEEE Comput. Soc., Los Alamitos, 2008), pp. 1–7 CrossRefGoogle Scholar
  6. 137.
    M. Cesati, M.D. Ianni, Computation models for parameterized complexity. Math. Log. Q. 43, 179–202 (1997) CrossRefzbMATHGoogle Scholar
  7. 140.
    J. Chen, H. Fernau, I. Kanj, G. Xia, Parametric duality and kernelization: lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 187.
    M. Cygan, F. Fomin, E. van Leeuwin, Parameterized complexity of firefighting revisited, in Parameterized and Exact Computation, 6th International Symposium, IPEC ’11, Revised Selected Papers, Saarbrücken, Germany, September 6–8, 2011, ed. by D. Marx, P. Rossmanith. LNCS, vol. 7112 (Springer, Berlin, 2011), pp. 13–26 CrossRefGoogle Scholar
  9. 188.
    M. Cygan, S. Kratsch, M. Pilipczuk, M. Pilipczuk, M. Wahlström, Clique cover and graph separation: new incompressibility results, in ICALP 2012 (2012), pp. 254–265 Google Scholar
  10. 191.
    M. Cygan, M. Pilipczuk, M. Pilipczuk, J.O. Wojtaszczyk, Kernelization hardness of connectivity problems in d-degenerate graphs, in Graph-Theoretic Concepts in Computer Science: 36th International Workshop, WG 2010, Revised Papers, Zarós, Crete, Greece, June 2010 (Springer, Berlin, 2010), pp. 147–158 Google Scholar
  11. 205.
    H. Dell, D. Marx, Kernelization of packing problems, in Proceedings of the Twenty-Third Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012, ed. by Y. Rabani (SIAM, Philadelphia, 2012), pp. 68–81 Google Scholar
  12. 206.
    H. Dell, D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, in Proceedings of 42nd ACM Symposium on Theory of Computing (STOC 2010), Cambridge, MA, June 6–June 8, 2010, ed. by L. Schulman (ACM, New York, 2010), pp. 251–260 CrossRefGoogle Scholar
  13. 223.
    I. Dinur, S. Safra, The importance of being biased, in Proceedings of 34th ACM Symposium on Theory of Computing (STOC ’02), Montréal, Québec, Canada, May 19–May 21, 2002, ed. by J. Reif (ACM, New York, 2002), pp. 33–42 Google Scholar
  14. 226.
    M. Dom, D. Lokshtanov, S. Saurabh, Incompressibility through colors and ids, in Proceedings of 36th International Colloquium on Automata, Languages and Programming (ICALP 2009), Part I, Rhodes, Greece, July 5–12, 2009, ed. by S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas, W. Thomas. LNCS, vol. 5555 (Springer, Berlin, 2009), pp. 378–389 CrossRefGoogle Scholar
  15. 227.
    M. Dom, D. Lokshtanov, S. Saurabh, Kernelization lower bounds through colors and IDs, to appear Google Scholar
  16. 244.
    R. Downey, M. Fellows, Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 256.
    R. Downey, M. Fellows, K. Regan, Parameterized circuit complexity and the W hierarchy. Theor. Comput. Sci. 191(1–2), 97–115 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 262.
    M. Drescher, A. Vetta, An approximation algorithm for the max leaf spanning arborescence problem. ACM Trans. Algorithms 6(3), 46 (2010) MathSciNetCrossRefGoogle Scholar
  19. 263.
    A. Drucker, New limits to classical and quantum instance compression, in FOCS 2012 (2012), pp. 609–618 Google Scholar
  20. 273.
    D. Eppstein, Subgraph isomorphism in planar graphs and related problems, in Proceedings of the Sixth Annual ACM–SIAM Symposium on Discrete Algorithms, San Francisco, California, 22–24 January 1995, ed. by K. Clarkson (SIAM, Philadelphia, 1995), pp. 632–640 Google Scholar
  21. 274.
    P. Erdös, Some remarks on the theory of graphs. Bull. Am. Math. Soc. 53, 292–294 (1947) CrossRefzbMATHGoogle Scholar
  22. 291.
    M. Fellows, D. Hermelin, F. Rosamond, S. Vialette, On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410, 53–61 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 306.
    H. Fernau, F. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, Y. Villanger, Kernel(s) for problems with no kernel: on out-trees with many leaves, in Proceedings of 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, Freiburg, Germany, February 26–28, 2009, ed. by S. Albers, J.-Y. Marion, T. Schwentik. Leibniz International Proceedings in Informatics, vol. 3 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2009), pp. 421–432 Google Scholar
  24. 312.
    J. Flum, M. Grohe, Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series (Springer, Berlin, 2006) Google Scholar
  25. 313.
    J. Flum, M. Grohe, M. Weyer, Bounded fixed-parameter tractability and log2 n nondeterministic bits. J. Comput. Syst. Sci. 72(1), 34–71 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 316.
    F. Fomin, F. Grandoni, D. Kratsch, Measure and conquer: domination—a case study, in Proceedings of 32nd International Colloquium on Automata, Languages and Programming (ICALP 2005), Lisbon, Portugal, July 11–15, 2005, ed. by L. Caires, G. Italiano, L. Monteiro, C. Palamidessi, M. Yung. LNCS, vol. 3580 (Springer, Berlin, 2005), pp. 191–203 CrossRefGoogle Scholar
  27. 320.
    F. Fomin, D. Kratsch, G. Woeginger, Exact (exponential) algorithms for the dominating set problem, in Graph-Theoretic Concepts in Computer Science: 30th International Workshop, WG 2004, Revised Papers, Bad Honnef, Germany, June 2004, ed. by J. Hromkovič, M. Nagl, B. Westfechtel. LNCS, vol. 3353 (Springer, Berlin, 2004), pp. 245–256 CrossRefGoogle Scholar
  28. 328.
    L. Fortnow, R. Santhanam, Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011). Special issue Celebrating Karp’s Kyoto Prize MathSciNetCrossRefzbMATHGoogle Scholar
  29. 337.
    M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979) zbMATHGoogle Scholar
  30. 347.
    S. Goldwasser, M. Sipser, Private coins versus public coins in interactive proof systems, in Proceedings of 18th ACM Symposium on Theory of Computing (STOC ’86), Berkeley, California, USA, May 28–May 30, 1986, ed. by J. Hartmanis (1986), pp. 59–68. Google Scholar
  31. 353.
    J. Gramm, J. Guo, F. Hüffner, R. Niedermeier, Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 355.
    J. Gramm, J. Guo, F. Hüffner, R. Niedermeier, Data reduction and exact algorithms for clique cover. ACM J. Exp. Algorithmics 13, 2 (2008) Google Scholar
  33. 379.
    D. Harnik, M. Naor, On the compressibility of NP instances and cryptographic applications, in Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, Berkeley, California, USA, 21–24 October 2006 (IEEE Comput. Soc., Los Alamitos, 2006), pp. 719–728 CrossRefGoogle Scholar
  34. 385.
    P. Heggernes, P. van’t Hof, B. Lévêque, D. Lokshtanov, C. Paul, Contracting graphs to paths and trees, in Parameterized and Exact Computation, 6th International Symposium, IPEC ’11, Revised Selected Papers, Saarbrücken, Germany, September 6–8, 2011, ed. by D. Marx, P. Rossmanith. LNCS, vol. 7112 (Springer, Berlin, 2011), pp. 55–66 CrossRefGoogle Scholar
  35. 388.
    D. Hermelin, S. Kratsch, K. Soltys, M. Wahlström, X. Wu, Hierarchies of inefficient kernelizability, arXiv:1110.0976v1
  36. 389.
    D. Hermelin, X. Wu, Weak compositions and their applications to polynomial lower bounds for kernelization. Electron. Colloq. Comput. Complex. 18, 72 (2011) Google Scholar
  37. 439.
    S. Khot, V. Raman, Parameterized complexity of finding subgraphs with hereditary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 445.
    D. Kirkpatrick, P. Hell, On the completeness of the generalized matching problem, in Proceedings of 10th ACM Symposium on Theory of Computing (STOC ’78), San Diego, California, USA, May 1–May 3, 1978, ed. by R. Lipton, W. Burkhard, W. Savitch, E. Friedman, A. Aho (ACM, New York, 1978), pp. 240–245 Google Scholar
  39. 447.
    H. Klauck, A. Nayak, A. Ta-Shma, D. Zuckerman, Interaction in quantum communication. IEEE Trans. Inf. Theory 53(6), 1970–1982 (2007) MathSciNetCrossRefGoogle Scholar
  40. 468.
    S. Kratsch, Co-nondeterminism in compositions: a kernelization lower bound for a Ramsey-type problem, in Proceedings of the Twenty-Third Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012, ed. by Y. Rabani (SIAM, Philadelphia, 2012), pp. 114–122 Google Scholar
  41. 469.
    S. Kratsch, M. Philipczuk, A. Rai, V. Raman, Kernel lower bounds using co-nondeterminism: finding induced hereditary subgraphs, in Algorithm Theory—SWAT 2012 (Springer, Berlin, 2012), pp. 364–375 Google Scholar
  42. 546.
    R. Niedermeier, Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31 (Oxford University Press, Oxford, 2006) CrossRefzbMATHGoogle Scholar
  43. 556.
    A. Pavan, A. Selman, S. Sengupta, V. Variyam, Polylogarithmic-round interactive proofs for coNP collapse the exponential hierarchy. Theor. Comput. Sci. 385(1–3), 167–178 (2007) CrossRefzbMATHGoogle Scholar
  44. 573.
    R. Raz, A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998). Earlier version in STOC ’95 MathSciNetCrossRefzbMATHGoogle Scholar
  45. 598.
    A. Sahai, S.P. Vadhan, A complete problem for statistical zero knowledge. J. ACM 50(2), 196–249 (2003) MathSciNetGoogle Scholar
  46. 671.
    R. Yuster, Combinatorial and computational aspects of graph packing and graph decomposition. Comput. Sci. Rev. 1, 12–26 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rodney G. Downey
    • 1
  • Michael R. Fellows
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations