Advertisement

The Basic Class W[1] and an Analog of Cook’s Theorem

  • Rodney G. Downey
  • Michael R. Fellows
Part of the Texts in Computer Science book series (TCS)

Abstract

We introduce the basic class W[1] and prove the fundamental analogue of the Cook–Levin Theorem. This is central to much of the hardness theory for parameterized complexity.

Keywords

Turing Machine Vertex Cover Parameterized Problem Conjunctive Normal Form Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 6.
    K. Abrahamson, M. Fellows, J. Ellis, M. Mata, On the complexity of fixed parameter problems, in Proceedings of 30th Annual Symposium on Foundations of Computer Science, FOCS 1989, Research Triangle Park, North Carolina, USA, 30 October–1 November 1989 (IEEE Comput. Soc., Los Alamitos, 1989), pp. 210–215 Google Scholar
  2. 55.
    R. Bar-Yehuda, M. Halldórsson, J. Naor, H. Shachnai, I. Shapira, Scheduling split intervals. SIAM J. Comput. 36(1), 1–15 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 105.
    K. Booth, Isomorphism testing in graphs, semigroups and finite automata are polynomially equivalent problems. SIAM J. Comput. 7, 273–279 (1978) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 115.
    J. Buss, J. Goldsmith, Nondeterminism within p. SIAM J. Comput. 22(3), 560–572 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 118.
    L. Cai, Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008) CrossRefGoogle Scholar
  6. 124.
    L. Cai, J. Chen, R. Downey, M. Fellows, The parameterized complexity of short computation and factorization. Arch. Math. Log. 36(4/5), 321–337 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 187.
    M. Cygan, F. Fomin, E. van Leeuwin, Parameterized complexity of firefighting revisited, in Parameterized and Exact Computation, 6th International Symposium, IPEC ’11, Revised Selected Papers, Saarbrücken, Germany, September 6–8, 2011, ed. by D. Marx, P. Rossmanith. LNCS, vol. 7112 (Springer, Berlin, 2011), pp. 13–26 CrossRefGoogle Scholar
  8. 237.
    R. Downey, The birth and early years of parameterized complexity, in The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, ed. by H. Bodlaender, R. Downey, F. Fomin, D. Marx. LNCS, vol. 7370 (Springer, Berlin, 2012), pp. 17–38 CrossRefGoogle Scholar
  9. 238.
    R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto, F. Rosamond, Cutting up is hard to do: the parameterised complexity of k-cut and related problems, in Computing: the Australasian Theory Symposium, CATS 2003. Electronic Notes in Theoretical Computer Science, vol. 78 (Elsevier, Amsterdam, 2003), pp. 209–222 Google Scholar
  10. 244.
    R. Downey, M. Fellows, Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 254.
    R. Downey, M. Fellows, V. Raman, The complexity of irredundant sets parameterized by size, Unpublished Google Scholar
  12. 258.
    R. Downey, M. Fellows, U. Taylor, The parameterized complexity of relational database queries and an improved characterization of W[1], in Combinatorics, Complexity & Logic, Proceedings of DMTCS ’96, Singapore, ed. by D. Bridges, C. Calude, J. Gibbons, S. Reeves, I. Witten (Springer, Berlin, 1996), pp. 194–213 Google Scholar
  13. 290.
    M. Fellows, D. Hermelin, M. Müller, F. Rosamond, A purely democratic characterization of W[1], in Parameterized and Exact Computation, Proceedings of Third International Workshop, IWPEC ’08, Victoria, Canada, May 2008, ed. by M. Grohe, R. Niedermeier. LNCS, vol. 5018 (Springer, Berlin, 2008), pp. 103–114 CrossRefGoogle Scholar
  14. 291.
    M. Fellows, D. Hermelin, F. Rosamond, S. Vialette, On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410, 53–61 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 309.
    J. Flum, M. Grohe, Fixed-parameter tractability, definability, and model checking. SIAM J. Comput. 31(1), 113–145 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 312.
    J. Flum, M. Grohe, Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series (Springer, Berlin, 2006) Google Scholar
  17. 368.
    Y. Gurevich, S. Shelah, Nearly linear time, in Logic at Botik ’89: Symposium on Logical Foundations of Computer Science, ed. by A. Meyer, M. Taitslin. LNCS, vol. 363 (Springer, Berlin, 1989), pp. 108–118 CrossRefGoogle Scholar
  18. 388.
    D. Hermelin, S. Kratsch, K. Soltys, M. Wahlström, X. Wu, Hierarchies of inefficient kernelizability, arXiv:1110.0976v1
  19. 402.
    J. Howie, An Introduction to Semigroup Theory. London Mathematical Society Monographs (Academic Press, San Diego, 1976) zbMATHGoogle Scholar
  20. 417.
    M. Jiang, On the parameterized complexity of some optimization problems related to multiple-interval graphs. Theor. Comput. Sci. 411, 4253–4262 (2010) CrossRefzbMATHGoogle Scholar
  21. 418.
    M. Jiang, Y. Zhang, Parameterized complexity in multiple-interval graphs: domination, in Parameterized and Exact Computation, 6th International Symposium, IPEC ’11, Revised Selected Papers, Saarbrücken, Germany, September 6–8, 2011, ed. by D. Marx, P. Rossmanith. LNCS, vol. 7112 (Springer, Berlin, 2011), pp. 27–40 CrossRefGoogle Scholar
  22. 444.
    C. Kintala, P. Fischer, Refining nondeterminism in relativised polynomial time bounded computations. SIAM J. Comput. 9, 46–53 (1980) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 513.
    D. Marx, Parameterized graph separation problems, in Parameterized and Exact Computation, Proceedings of First International Workshop, IWPEC ’04, Bergen, Norway, September 2004, ed. by R. Downey, M. Fellows, F. Dehne. LNCS, vol. 3162 (Springer, Berlin, 2004), pp. 71–82 CrossRefGoogle Scholar
  24. 540.
    A. Naik, K. Regan, D. Sivakumar, Quasilinear time complexity theory, in Proceedings of 11th Annual Symposium on Theoretical Aspects on Computer Science, STACS 94, Caen, France, February 1994, ed. by P. Enjalbert, E. Mayr, K. Wagner. LNCS, vol. 775 (Springer, Berlin, 1994), pp. 97–108 Google Scholar
  25. 554.
    C. Papadimitriou, M. Yannakakis, On the complexity of database queries, in PODS ’97, Proceedings of the Sixteenth ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems, ed. by A. Mendelzon, M. Özsoyoglu (ACM, New York, 1997), pp. 12–19 CrossRefGoogle Scholar
  26. 563.
    J. Power, Four NP-complete embedding problems, Logic Paper 29, Monash University, January 1981 Google Scholar
  27. 577.
    K. Regan, Finite substructure languages, in Proceedings of Fourth Annual Structure in Complexity Conference, University of Oregon, Eugene, Oregon, June 19–22, 1989 (IEEE Comput. Soc., Los Alamitos, 1989), pp. 87–96 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rodney G. Downey
    • 1
  • Michael R. Fellows
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations