Advertisement

The Basic Definitions

  • Rodney G. Downey
  • Michael R. Fellows
Part of the Texts in Computer Science book series (TCS)

Abstract

The fundamental notions of parameterized complexity are introduced.

Keywords

Model Check Vertex Cover Query Evaluation Parameterized Tractability Exponential Time Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 6.
    K. Abrahamson, M. Fellows, J. Ellis, M. Mata, On the complexity of fixed parameter problems, in Proceedings of 30th Annual Symposium on Foundations of Computer Science, FOCS 1989, Research Triangle Park, North Carolina, USA, 30 October–1 November 1989 (IEEE Comput. Soc., Los Alamitos, 1989), pp. 210–215 Google Scholar
  2. 85.
    H. Bodlaender, R. Downey, F. Fomin, D. Marx (eds.), The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday. LNCS, vol. 7370 (Springer, Berlin, 2012) Google Scholar
  3. 122.
    L. Cai, J. Chen, R. Downey, M. Fellows, Advice classes of parameterized tractability. Ann. Pure Appl. Log. 84, 119–138 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 162.
    J. Conway, C. Gordon, Knots and links in spatial graphs. J. Graph Theory 7(4), 445–453 (1983) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 237.
    R. Downey, The birth and early years of parameterized complexity, in The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, ed. by H. Bodlaender, R. Downey, F. Fomin, D. Marx. LNCS, vol. 7370 (Springer, Berlin, 2012), pp. 17–38 CrossRefGoogle Scholar
  6. 241.
    R. Downey, M. Fellows, Fixed-parameter tractability and completeness. Congr. Numer. 87, 161–178 (1992) MathSciNetGoogle Scholar
  7. 242.
    R. Downey, M. Fellows, Fixed-parameter tractability and completeness. III. Some structural aspects of the W hierarchy, in Complexity Theory: Current Research, Dagstuhl Workshop, February 2–8, 1992, ed. by K. Ambos-Spies, S. Homer, U. Schöning (Cambridge University Press, Cambridge, 1993), pp. 191–225 Google Scholar
  8. 243.
    R. Downey, M. Fellows, Fixed-parameter tractability and completeness. I. Basic results. SIAM J. Comput. 24(4), 873–921 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 244.
    R. Downey, M. Fellows, Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 247.
    R. Downey, M. Fellows, Parameterized Complexity. Monographs in Computer Science (Springer, Berlin, 1999) CrossRefGoogle Scholar
  11. 297.
    M. Fellows, M. Langston, Nonconstructive proofs of polynomial-time complexity. Inf. Process. Lett. 26, 157–162 (1987/88) MathSciNetCrossRefGoogle Scholar
  12. 299.
    M. Fellows, M. Langston, Nonconstructive tools for proving polynomial-time complexity. J. ACM 35, 727–739 (1988) MathSciNetzbMATHGoogle Scholar
  13. 312.
    J. Flum, M. Grohe, Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series (Springer, Berlin, 2006) Google Scholar
  14. 337.
    M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979) zbMATHGoogle Scholar
  15. 479.
    M. Langston, Fixed parameter tractability, a prehistory. A Festschrift contribution devoted to Michael R. Fellows on the occasion of his 60th birthday, in The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, ed. by H. Bodlaender, R. Downey, F. Fomin, D. Marx. LNCS, vol. 7370 (Springer, Berlin, 2012), pp. 3–16 CrossRefGoogle Scholar
  16. 491.
    O. Lichtenstein, A. Pnueli, Checking that finite state concurrent programs satisfy their linear specification, in Conference Record of the Twelfth Annual ACM Symposium on Principles of Programming Languages, New Orleans, Louisiana, USA, January 1985, ed. by M.V. Deusen, Z. Galil, B. Reid (ACM, New York, 1985), pp. 97–107 Google Scholar
  17. 533.
    B. Mohar, Embedding graphs in an arbitrary surface in linear time, in Proceedings of 28th ACM Symposium on Theory of Computing (STOC ’96), Philadelphia, Pennsylvania, USA, May 22–May 24, 1996, ed. by G. Miller (ACM, New York, 1996), pp. 392–397 Google Scholar
  18. 577.
    K. Regan, Finite substructure languages, in Proceedings of Fourth Annual Structure in Complexity Conference, University of Oregon, Eugene, Oregon, June 19–22, 1989 (IEEE Comput. Soc., Los Alamitos, 1989), pp. 87–96 CrossRefGoogle Scholar
  19. 588.
    N. Robertson, P. Seymour, Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 589.
    N. Robertson, P. Seymour, Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 597.
    H. Sachs, On spatial representation of finite graphs, in Finite and Infinite Sets, ed. by A. Hajnal, L. Loász, V. Sós. Colloquia Mathematica Societatis János Bolyai, vol. 37 (North-Holland, Amsterdam, 1984), pp. 649–662 Google Scholar
  22. 655.
    M. Vardi, The complexity of relational query languages (extended abstract), in Proceedings of 14th ACM Symposium on Theory of Computing (STOC ’82), San Francisco, California, USA, May 5–May 7, 1982, ed. by H. Lewis, B. Simons, W. Burkhard, L. Landweber (ACM, New York, 1982), pp. 137–146. http://dl.acm.org/citation.cfm?id=802186 Google Scholar
  23. 656.
    M. Vardi, P. Wolper, An automata-theoretic approach to automatic program verification (Preliminary report), in Proceedings of the Symposium on Logic in Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June 16–18, 1986 (IEEE Comput. Soc., Los Alamitos, 1986), pp. 332–344 Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rodney G. Downey
    • 1
  • Michael R. Fellows
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations