Other Width Metrics

  • Rodney G. Downey
  • Michael R. Fellows
Part of the Texts in Computer Science book series (TCS)


Treewidth is the best studied and perhaps the most important of a large number of width metrics in graphs. In this chapter we will explore some other metrics which have proven useful.


Planar Graph Dynamic Programming Algorithm Tree Decomposition Perfect Elimination Fast Matrix Multiplication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 16.
    I. Adler, Directed tree-width examples. J. Comb. Theory, Ser. B 97(5), 718–725 (2007) CrossRefzbMATHGoogle Scholar
  2. 23.
    J. Alber, F. Dorn, R. Niedermeier, Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs. Discrete Appl. Math. 145(2), 219–231 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 24.
    J. Alber, H. Fan, M.R. Fellows, H. Fernau, R. Niedermeier, F.A. Rosamond, U. Stege, A refined search tree technique for Dominating Set on planar graphs. J. Comput. Syst. Sci. 71(4), 385–405 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 26.
    J. Alber, R. Niedermeier, Improved tree decomposition based algorithms for domination-like problems, in LATIN 2002: Theoretical Informatics. Proceedings of 5th Latin American Symposium, Cancun, Mexico, April 2002, ed. by S. Rajsbaum. LNCS, vol. 2286 (Springer, Berlin, 2002), pp. 613–627 CrossRefGoogle Scholar
  5. 34.
    N. Alon, S. Gutner, Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544–556 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 49.
    G. Bader, C. Hogue, An automated method for finding molecular complexes in large protein interaction networks. BCM Bioinformatics 4 (2003) Google Scholar
  7. 61.
    D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, DAG-width and parity games, in Proceedings of 23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS 2006, Marseille, France, February 23–25, 2006, ed. by B. Durand, W. Thomas. LNCS, vol. 3884 (Springer, Berlin, 2006), pp. 524–536 Google Scholar
  8. 64.
    N. Betzler, R. Niedermeier, J. Uhlmann, Tree decompositions of graphs: saving memory in dynamic programming. Discrete Optim. 3(3), 220–229 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 66.
    A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets Möbius: fast subset convolution, in Proceedings of 39th ACM Symposium on Theory of Computing (STOC ’07), San Diego, California, June 11–June 13, 2007, ed. by D. Johnson, U. Feige (ACM, New York, 2007), pp. 67–74 Google Scholar
  10. 100.
    H. Bodlaender, D. Thilikos, Constructive linear time algorithms for branchwidth, in Proceedings of 24th International Colloquium on Automata, Languages and Programming (ICALP 1997), Bologna, Italy, July 7–11, 1997, ed. by P. Degano, R. Gorrieri, A. Marchetti-Spaccamela. LNCS, vol. 1256 (Springer, Berlin, 1997), pp. 627–637 CrossRefGoogle Scholar
  11. 165.
    D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 171.
    B. Courcelle, The monadic second-order theory of graphs VII: Graphs as relational structures. Theor. Comput. Sci. 101, 3–33 (1992) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 178.
    B. Courcelle, J. Engelfriet, Graph Structure and Monadic Second Order Logic: A Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications, vol. 138 (Cambridge University Press, Cambridge, 2012) CrossRefGoogle Scholar
  14. 180.
    B. Courcelle, J. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 182.
    B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–144 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 190.
    M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. van Rooij, J.O. Wojtaszczyk, Solving connectivity problems parameterized by treewidth in single exponential time, in IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22–25, 2011, ed. by R. Ostrovsky (IEEE Comput. Soc., Los Alamitos, 2011) Google Scholar
  17. 229.
    F. Dorn, Dynamic programming and fast matrix multiplication, in Algorithms—ESA 2006: Proceedings of 14th Annual European Symposium, Zurich, Switzerland, September 11–13, 2006, ed. by Y. Azar, T. Erlebach. LNCS, vol. 4168 (Springer, Berlin, 2006), pp. 280–291 CrossRefGoogle Scholar
  18. 232.
    F. Dorn, F. Fomin, D. Thilikos, Fast subexponential algorithm for non-local problems on graphs of bounded genus, in Algorithm Theory—SWAT 2006, Proceedings of 10th Scandinavian Workshop on Algorithm Theory, Riga, Latvia, July 6–8, 2006, ed. by L. Arge, R. Freivalds. LNCS, vol. 4059 (Springer, Berlin, 2006), pp. 172–183 CrossRefGoogle Scholar
  19. 233.
    F. Dorn, F. Fomin, D. Thilikos, Catalan structures and dynamic programming in H-minor-free graphs, in Proceedings of the Nineteenth Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20–22, 2008, ed. by S.-H. Teng (SIAM, Philadelphia, 2008), pp. 631–640 Google Scholar
  20. 235.
    F. Dorn, E. Penninkx, H. Bodlaender, F. Fomin, Efficient exact algorithms on planar graphs: exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 275.
    P. Erdös, A. Hajnal, On chromatic number of graphs and set-systems. Acta Math. Hung. 17(1–2), 61–99 (1966) CrossRefzbMATHGoogle Scholar
  22. 303.
    M. Fellows, F. Rosamond, U. Rotics, S. Szeider, Clique-width is NP-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 314.
    F. Fomin, P. Golovach, D. Lokshtanov, S. Saurabh, Clique-width: on the price of generality, in Proceedings of the Twentieth Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4–6, 2009, ed. by C. Mathieu (SIAM, Philadelphia, 2009), pp. 825–834 Google Scholar
  24. 329.
    J. Fouhy, Computational experiments on graph width metrics, Master’s thesis, Victoria University of Wellington, 2002 Google Scholar
  25. 351.
    M. Golumbic, U. Rotics, On the clique-width of some perfect graph classes. Int. J. Found. Comput. Sci. 11(3), 423–443 (2000) MathSciNetCrossRefGoogle Scholar
  26. 360.
    M. Grohe, D. Marx, Descriptive complexity, canonisation, and definable graph structure theory, to appear Google Scholar
  27. 373.
    M. Gyssens, J. Paredaens, A decomposition methodology for cyclic databases, in Advances in Database Theory, Vol. 2, Based on the Proceedings of the Workshop on Logical Data Bases ADBT 1982, Toulouse, France (Centre d’études et de recherches de Toulouse, Toulouse, 1982), pp. 85–122 Google Scholar
  28. 390.
    I. Hicks, Planar branch decompositions I: The ratcatcher. INFORMS J. Comput. 17(4), 402–412 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 391.
    I. Hicks, Planar branch decompositions II: The cycle method. INFORMS J. Comput. 17(4), 413–421 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 395.
    P. Hliněný, S.-I. Oum, Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 396.
    P. Hliněný, S.-I. Oum, D. Seese, G. Gottlob, Width parameters beyond treewidth and their applications. Comput. J. 51(3), 326–362 (2008) CrossRefGoogle Scholar
  32. 404.
    F. Hüffner, Algorithm engineering for optimal graph bipartization, in WEA 2005: 4th International Workshop on Efficient and Experimental Algorithms, Santorini Island, Greece, May 10–13, 2005, ed. by S. Nikoletseas. LNCS, vol. 3503 (Springer, Berlin, 2005), pp. 240–252 Google Scholar
  33. 407.
    P. Hunter, S. Kreutzer, Digraph measures: Kelly decompositions, games and orderings, in Proceedings of the Eighteenth Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7–9, 2007, ed. by N. Bansal, K. Pruhs, C. Stein (SIAM, Philadelphia, 2007), pp. 637–644 Google Scholar
  34. 410.
    R. Impagliazzo, R. Paturi, The complexity of k-sat, in Proceedings of the 14th Annual IEEE Conference on Computational Complexity, CCC 1999, Atlanta, GA, USA, May 4–6, 1999 (IEEE Comput. Soc., Los Alamitos, 1999), pp. 237–240 Google Scholar
  35. 421.
    T. Johnson, N. Robertson, P. Seymour, R. Thomas, Addendum to Directed tree-width.
  36. 422.
    T. Johnson, N. Robertson, P. Seymour, R. Thomas, Directed tree-width. J. Comb. Theory, Ser. B 82(1), 138–154 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  37. 446.
    L. Kirousis, D. Thilikos, The linkage of a graph. SIAM J. Comput. 25(3), 626–647 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 456.
    P. Kolaitis, M. Vardi, Conjunctive query containment and constraint satisfaction. J. Comput. Syst. Sci. 61(2), 302–332 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  39. 478.
    A. Langer, P. Rossmanith, S. Sikdar, Linear-time algorithms for graphs of bounded rankwidth: a fresh look using game theory, in CoRR (Computing Research Repository, Berlin, submitted). arXiv:1102.0908
  40. 494.
    D. Lokshtanov, D. Marx, S. Saurabh, Known algorithms on graphs of bounded treewidth are probably optimal, in Proceedings of the Twenty-Second Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23–25, 2011, ed. by D. Randall (SIAM, Philadelphia, 2011), pp. 777–789 Google Scholar
  41. 496.
    D. Lokshtanov, D. Marx, S. Saurabh, Slightly superexponential parameterized problems, in Proceedings of the Twenty-Second Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23–25, 2011, ed. by D. Randall (SIAM, Philadelphia, 2011), pp. 760–776 Google Scholar
  42. 549.
    J. Obdržálek, Algorithmic analysis of parity games, PhD thesis, University of Edinburgh, 2007 Google Scholar
  43. 551.
    S. Oum, P. Seymour, Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96, 514–528 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  44. 559.
    G. Philip, V. Raman, S. Sikdar, Solving dominating set in larger classes of graphs: FPT algorithms and polynomial kernels, in Algorithms—ESA 2009: Proceedings of 17th Annual European Symposium, Copenhagen, Denmark, September 7–9, 2009, ed. by A. Fiat, P. Sanders. LNCS, vol. 5757 (Springer, Berlin, 2009), pp. 694–705 CrossRefGoogle Scholar
  45. 560.
    G. Philip, V. Raman, S. Sikdar, Polynomial kernels for dominating sets in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 11 (2012) MathSciNetCrossRefGoogle Scholar
  46. 586.
    N. Robertson, P. Seymour, Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B 52(2), 153–190 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  47. 593.
    D. Rose, R. Tarjan, Algorithmic aspects of vertex elimination on directed graphs. SIAM J. Appl. Math. 34(1), 176–197 (1978) MathSciNetCrossRefzbMATHGoogle Scholar
  48. 596.
    J. Rué, I. Sau, D. Thilikos, Dynamic programming for graphs on surfaces, in Proceedings of 37th International Colloquium on Automata, Languages and Programming (ICALP 2010), Bordeaux, France, July 6–10, 2010, ed. by S. Abramsky, C. Gavoille, C. Kirchner, F.M. auf der Heide, P. Spirakis. LNCS, vol. 6198 (Springer, Berlin, 2010), pp. 372–383 CrossRefGoogle Scholar
  49. 615.
    P. Seymour, R. Thomas, Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  50. 635.
    G. Szekeres, H. Wilf, An inequality for the chromatic number of a graph. J. Comb. Theory, Ser. B 4, 1–3 (1968) MathSciNetCrossRefGoogle Scholar
  51. 654.
    J. van Rooij, H. Bodlaender, P. Rossmanith, Dynamic programming on tree decompositions using generalised fast subset convolution, in Algorithms—ESA 2009: Proceedings of 17th Annual European Symposium, Copenhagen, Denmark, September 7–9, 2009, ed. by A. Fiat, P. Sanders. LNCS, vol. 5757 (Springer, Berlin, 2009), pp. 566–577 CrossRefGoogle Scholar
  52. 665.
    V. William, Breaking the Coppersmith–Winograd barrier, to appear Google Scholar
  53. 672.
    G. Yuval, An algorithm for finding shortest paths using N (2.81) infinite precision multiplications. Inf. Process. Lett. 4(6), 155–156 (1976) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rodney G. Downey
    • 1
  • Michael R. Fellows
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations