Skip to main content

Power Plant Designs

  • Chapter
  • First Online:
Magnetic Fusion Technology

Part of the book series: Lecture Notes in Energy ((LNEN,volume 19))

Abstract

The electrical power companies have specified what features are desired for attractive power plants, with regard to economics, regulatory simplicity, and public acceptance. The plants should achieve high availability, and should have maintenance procedures that can be performed in a few months, which is very difficult for large fusion reactors. A company must borrow money to build a power plant long before it starts earning revenue, so short construction times are important, and the total capital cost is often about twice as high as the direct capital cost. Large fusion power plants (3 GWe vs. 1 GWe) have an economy of scale that reduces the cost of electricity by about 20–30 %, but grid perturbation during shutdown would be a problem. Fusion power plant design studies in Europe, Japan, China, and the USA have estimated the cost of fusion-power electricity to be higher than from fission power and fossil fuels, but fusion could become competitive under several possible scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This article lists two EPRI reports with additional information:

    1. 1.

      Report of the 1992 Fusion Panel, TR-101649, November 1992. (Expert panel's key criteria for comparing alternative fusion technologies).

    2. 2.

      Utility Requirements for Fusion, AP-2254, February 1982. (Broad-based industry derivation of fusion power plant characteristics judged most important to electric utilities).

References

  • Blake EM (2008) U.S. capacity factors: another small gain, another new peak. Nucl News 51(May):28–34

    Google Scholar 

  • Bourque RF (1998) The colliding compact torus: a steady state fusion reactor with pulsed heating, fueling, and current drives. J Fusion Energ 17:207–208

    Article  Google Scholar 

  • Buende R (1988) Reliability and availability assessments for the next European Torus. Fusion Technol 14:197–217

    Google Scholar 

  • Burgess TW (2008) Nuclear science and technology division. Oak Ridge National Laboratory, Oak Ridge, TN. Private Communication. November 3 2008

    Google Scholar 

  • Burgess T, Brown T, Chesser J, Dilling D, Heitzenroeder P, Nelson B (1999) Remote maintenance requirements and approach for the FIRE project. In: Proceedings of the 18th IEEE/NPSS symposium on fusion engineering, IEEE Albuquerque, NM. pp 484–487, 25–29 October 1999

    Google Scholar 

  • Cadwallader LC (2001) Comparisons of facility-specific and generic failures rates for tritium-bearing components used in fusion applications. Fusion Eng Des 54:353–359

    Article  Google Scholar 

  • Cadwallader LC (2007) Failure rate data analysis for high technology components. In: Proceedings of the 8th international topical meeting on nuclear applications and utilization of accelerators (AccApp ’07), American Nuclear Society, Pocatello, ID, pp 109–116, 29 July–2 August 2007

    Google Scholar 

  • Cadwallader LC, Marshall TD (1996) Component reliability data estimation for fusion safety and risk assessment. In: Proceedings of the international topical meeting on probabilistic safety assessment (PSA ‘96), American Nuclear Society, Park City, UT, pp 637–648, 29 September–3 October 1996

    Google Scholar 

  • Cadwallader LC, Petti DA (1999) A review of availability growth in energy production technologies. In: Proceedings of the 18th IEEE/NPSS symposium on fusion engineering, IEEE, Albuquerque, NM, pp 585–588, 25–29 October 1999

    Google Scholar 

  • Cadwallader LC, Pinna T, Petersen PI (2007) Power supply reliability estimates for experimental fusion facilities. Fusion Sci Technol 52:979–984

    Google Scholar 

  • Cambi G, Cepraga DG, Frisoni M, Carloni F, Chiasera A (2003) Vacuum vessel contact dose build-up from start to end of ITER operations. In: Proceedings of the 20th IEEE/NPSS symposium on fusion engineering, IEEE, San Diego, CA, pp 156–159, 14–17 October 2003

    Google Scholar 

  • Cambi G, Pinna T, Angelone M (2008) Data collection on component malfunctions and failures of JET ICRH system. Fusion Eng Des 83(December):1874–1877

    Article  Google Scholar 

  • Center for Chemical Process Safety (1989) Guidelines for process equipment reliability data, with data tables. American Institute of Chemical Engineers, New York

    Book  Google Scholar 

  • Chen H, Wu Y, Konishi S, Hayward J (2008) A high temperature blanket for hydrogen production. Fusion Eng Des 83:903–911

    Article  Google Scholar 

  • Ciattaglia S, Angelini SBM, Cox M, Grüber O, Van Houtte D, Kurihara K, Petersen P, De Baar M, Sonato P (2005) Availability of present fusion devices. In: Proceedings of the 21st IEEE/NPSS symposium on fusion engineering, IEEE, Knoxville, TN. Paper 091, 26–29 September 2005

    Google Scholar 

  • Cox S, Tait R (1998) Safety, reliability and risk management, an integrated approach, Chap. 1. 2nd edn. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  • Cusak R, Brown P, Horn R, Loving A, Sanders S, Sanders SG, Stokes R (1998) Operational experience from the JET remote handling tile exchange, fusion technology 1998. In: Proceedings of the 20th symposium on fusion technology, EURATOM-CEA, Marseille, France, pp 1135–1138, 7–11 September 1998

    Google Scholar 

  • David PA, Maude-Griffin R, Rothwell G (1996) Learning by accident? Reductions in the risk of unplanned outages in U.S. nuclear power plants after Three Mile Island. J Risk Uncertainty 13:175–198

    Article  MATH  Google Scholar 

  • Derdiger JA, Bhatt KH, Siegfriedt WE (1981) Component failure and repair data for coal-fired power plants, AP-2071. Electric Power Research Institute, Palo Alto, CA

    Google Scholar 

  • Dolan TJ (1993) Fusion power economy of scale. Fusion Technol 24:97–111

    MathSciNet  Google Scholar 

  • Dolan TJ (1982) Fusion Research, Pergamon Press, Elmsford, New York

    Google Scholar 

  • Dolan TJ, Yamazaki K, Sagara A (2005) Helical fusion power plant economics studies. Fusion Sci Technol 47:60–72

    Google Scholar 

  • El-Guebaly LA (2009) History and evolution of fusion power plant studies: past, present, and future prospects. In: Aasen A, Olsson P (eds) Nuclear reactors, nuclear fusion, and fusion engineering. Nova Science Publishers, Hauppauge, pp 217–271

    Google Scholar 

  • Elsayed EAA (1996) Reliability engineering. Addison-Wesley Publishers, New York

    Google Scholar 

  • Feng KM, Pan CH, Zhang GS, Luo DL, Zhou ZW, Yang YW, Wang XY, Hu G, Yuan T, Chen Z, Wang HY, Chen CA, Li ZX, Zhao Z, Li ZQ (2006) Preliminary design for a China ITER test blanket module. Fusion Eng Des 81:1219–1224, Figure 2

    Article  Google Scholar 

  • Feng KM et al (2008) Overview of design and R&D of solid breeder TBM in China. Fusion Eng Des 83:149–1156

    Article  Google Scholar 

  • Feng KM, Zhang GS, Zheng GY, Zhao Z, Yuan T, Li ZQ, Sheng GZ, Pan CH (2009) Conceptual design study of fusion DEMO plant at SWIP. Fusion Eng Des 84:2109–2113

    Article  Google Scholar 

  • Galbiati L, Carter P, Gaberscik A, Haist B, Irving M, Locke D, Martin P, Mills S, Minchin R, Palmer J (1998) Experience from remote handling equipment support during the JET remote tile exchange, fusion technology. In: Proceedings of the 20th symposium on fusion technology, EURATOM-CEA, Marseille, France, pp 1131–1134, 7–11 September 1998

    Google Scholar 

  • Hale PS Jr, Arno RG, Briggs SJ (1999) Operational maintenance data for power generation distribution and HVAC components. IEEE Trans Ind Appl 35:282–297

    Article  Google Scholar 

  • Hansen T (2008) How low can they go? Power Eng 112 (August)

    Google Scholar 

  • Hecht H (2004) Systems reliability and failure prevention. Artech House, Inc., Norwood

    MATH  Google Scholar 

  • Honda T, Hattori Y, Holloway C, Martin E, Matsumoto Y, Matsunobu Y, Suzuki T, Tesini A, Baulo V, Haange R, Palmer J, Shibanuma K (2002) Remote handling systems for ITER. Fusion Eng Des 63–64:507–518

    Article  Google Scholar 

  • IEEE (1999) IEEE guide for general principles of reliability analysis of nuclear power generating station safety systems, IEEE Std 352-1987. Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • IEEE (2007) IEEE recommended practice for the design of reliability industrial and commercial power systems, IEEE Std 493-2007. Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • International Atomic Energy Agency (2002) ITER technical basis, ITER EDA documentation series no. 24, plant description document, Chap. 5. International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  • Johnson DW, Costley AE (2008) Chap. 13—challenges in fusion diagnostic development: a virtual tour of ITER. Fusion Sci Technol 53:751

    Google Scholar 

  • Jones JV (2007) Supportability engineering handbook: implementation, measurement, and management, Chap. 5. McGraw Hill, New York

    Google Scholar 

  • Kaslow J et al (1994) Criteria for practical fusion power systems: report from the EPRI fusion panel. J Fusion Energ 13(2/3):181–183

    Google Scholar 

  • Kozaki Y, Imagawa S, Sagara A (2009) Design windows and cost analysis on a helical reactor. Nucl Fusion 49:115011 (p 8)

    Google Scholar 

  • Leavitt J (2003) The complete guide to preventive and predictive maintenance, Chap. 2. Industrial Press, New York

    Google Scholar 

  • Lyon J et al (2008) Systems studies and optimization of the ARIES-CS power plant. Fusion Sci Technol 54:694–724

    Article  Google Scholar 

  • Maisonnier D (2004) PPCS reactor models, 9th course on technology of fusion Tokamak reactors. International School of Fusion Reactor Technology, Erice

    Google Scholar 

  • Maisonnier D, Campbell D, Cook I, Di Pace L, Giancarli L, Hayward J, Li Puma A, Medrano M, Norajitra P, Roccella M, Sardain P, Tran M Q, Ward D (2007) Power plant conceptual studies in Europe. Nucl Fusion 47:1524–1532

    Google Scholar 

  • Moss TR (2005) The reliability data handbook. ASME Press, New York

    Google Scholar 

  • Najmabadi F et al (1997) The starlite study: assessment of options for tokamak power plants—final report: UC San Diego Report UCSD-ENG-005.)

    Google Scholar 

  • Najmabadi F, Abdou A, Bromberg L, Brown T, Chan VC, Chu MC, Dahlgren F, El-Guebaly L, Heitzenroeder P, Henderson D, John HE, Kessel CE, Lao LL, Longhurst R, Malang S, Mau TK, Merrill BJ, Miller RL, Mogahed E, Moore RL, Petrie T, Petti DA, Politzer P, Raffray AR, Steiner D, Sviatoslavsky I, Synder P, Syaebler GM, Turnbull AD, Tillack MS, Waganer LM, Wang X, West P, Wilson P (2006) The ARIES-AT advanced tokamak, advanced technology fusion power plant. Fusion Eng Des 80:3–23

    Article  Google Scholar 

  • Nishio S, Tobita K, Konishi S, Ando T, Hiroki S, Kuroda T, Yamauchi M, Nagata M, Azumi M (2003), Tight aspect ratio tokamak power reactor with superconducting TF coils. In: Proceedings of the 19th IAEA Fusion Energy Conference, Lyon, France, Paper FT/P/1-21, copyright International Atomic Energy Agency, Vienna, 14–19 October 2002

    Google Scholar 

  • Oak Ridge National Laboratory (ORN) (1988) Nuclear energy cost data base: a reference data base for nuclear and coal-fired power plant power generation cost analysis (NECDB); DOE/NE–0095, Prepared by Oak Ridge National Laboratory, Oak Ridge, TN, USA, September 1988

    Google Scholar 

  • Pecht M (ed) (1995) Product reliability, maintainability, and supportability handbook, Chap. 7. CRC Press, Boca Raton, FL

    Google Scholar 

  • Perkins LJ (1997) Complexity and availability for fusion power plants: the potential advantages of inertial fusion energy. J Fusion Energ 16:307–316

    Article  Google Scholar 

  • Petti DA, Merrill BJ, Moore RL, Longhurst GR, El-Guebaly L, Mogahed E, Henderson D, Wilson P, Abdou M (2006) ARIES-AT safety design and analysis. Fusion Eng Des 80:111–137

    Article  Google Scholar 

  • Pinna T, Cambi G, Ciattaglia S, Lo Bue A, Knipe S, Orchard J, Pearce R, Besserer U (2005) Collection and analysis of data related to fusion machines (JET and TLF) operating experience on component failure. Fusion Eng Des 75–79:1199–1203

    Article  Google Scholar 

  • Pinna T, Cambi G, Gravanti F (2007) Collection and analysis of component failure data from JET systems: neutral beam injectors and power supply. Nucl Fusion 47:S453–S457

    Article  Google Scholar 

  • Procaccia H, Arsenis S P, Aufort P, (1998) EIReDA, European industry reliability data bank, 3rd edn. Crete University Press, Iraklion, Crete, Greece

    Google Scholar 

  • Ribeiro I, Damiani C, Tesini A, Kakudate S, Siuko M, Neri C (2011) The remote handling systems for ITER. Fusion Eng Des 86:471–477

    Article  Google Scholar 

  • Rolfe AC (2007) A perspective on fusion relevant remote handling techniques. Fusion Eng Des 82:1917–1923

    Article  Google Scholar 

  • Sagara A, Imagawa S, Mitarai O, Dolan T, Tanaka T, Kubota Y, Yamazaki K, Watanabe KY, Mizuguchi N, Muroga T, Noda N, Kaneko O, Yamada H, Ohyabu N, Uda T, Komori A, Sudo S, Motojima O (2005) Improved structure and long-life blanket concepts for heliotron reactors. Nucl Fusion 45:258–263

    Google Scholar 

  • Schultz TL (2006) Westinghouse AP1000 advanced passive plant. Nucl Eng Des 236:1547–1557

    Article  Google Scholar 

  • Sheffield J (1994) The physics of magnetic fusion reactors. Rev Mod Phys 66:1015

    Article  Google Scholar 

  • Sheffield J et al (1986) Cost assessment of a generic magnetic fusion reactor. Fusion Technol 9:2

    Google Scholar 

  • Sheffield J, Brown W, Garrett G, Hilley J, McCloud D, Ogden J,. Shields T, Waganer LM (2000) A study of options for the deployment of large fusion power plants. Joint Institute for Energy Environment Report JIEE 2000–2006, June; http://web.utk.edu/~isse2006/pdf/jieepubs/2000-06.pdf. Also published in Fusion Science and Technology 40, Number 1. Table V, Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA, pp 1–36, July 2001

  • Taylor NP, Knight PJ, Ward DJ (2000) A model of the availability of a fusion power plant. Fusion Eng Des 51–52:363–369

    Article  Google Scholar 

  • Tobias PA, Trindade DC (1995) Applied reliability, 2nd edn. Taylor & Francis, Inc, New York

    MATH  Google Scholar 

  • U.S. Department of Energy (1996) Safety of magnetic fusion facilities: requirements, DOE-STD-6002-96

    Google Scholar 

  • Vayakis G, Hodgson ER, Voitsenya V, Walker CI (2008) Generic diagnostic issues for a burning plasma experiment, Chap. 12. Fusion Sci Technol 53:699

    Google Scholar 

  • Waganer LM et al (1992) Inertial fusion energy reactor design studies, Prometheus-L, Prometheus-HI, Final Report DOE/ER-54101, MDC 92E0008, March

    Google Scholar 

  • Waganer LM, Najmabadi F, Tillack MS the ARIES team (1995) What must Demo do? 16th IEEE symposium on fusion engineering, Champaign IL, 30 September–5 October 1995

    Google Scholar 

  • Waganer LM, ARIES Team (2006) ARIES-AT maintenance system definitions and analysis. Fusion Eng Des 80:161–180

    Google Scholar 

  • Waganer LM, Peipert RJ, Jr, Wang XR, Malang S, ARIES Team (2008) ARIES-CS Maintenance system definition and analysis. Fusion Sci Technol 54(3):787–817

    Google Scholar 

  • Ward D (2004) Impact of physics on power plant design and economics, 9th course on technology of fusion tokamak reactors. International School of Fusion Reactor Technology, Erice, Italy

    Google Scholar 

  • Wu Y, FDS Team (2007a), Conceptual Design and Testing Strategy of a Dual Functional Lithium-lead Test Blanket Module in ITER and EAST, Nuclear Fusion, 47:1533-1539

    Google Scholar 

  • Wu Y, FDS Team (2007b) Design status and development strategy of China liquid lithium-lead blankets and related material technology. J Nucl Mater 367:1410–1415

    Google Scholar 

  • Wu Y, FDS Team (2008) Conceptual design study of the China fusion power plant FDS-II. Fusion Eng Des 83:1683–1689

    Google Scholar 

  • Wu Y, FDS Team (2009) Conceptual design study of the China fusion power plant FDS-II, Fusion Engineering and Design 83:1683-1689

    Google Scholar 

  • Wu YC, Qian JP, Yu JN (2002) The fusion-driven hybrid system and its material selection. J Nucl Mater 307:1629–1636. Also invited presentation at the international conference on fusion reactor materials (ICFRM-10), Baden-Basen, Germany, 14–19 October 2001

    Google Scholar 

  • Yamamoto I, Nishitani T, Sagara A (2009) Overview of recent Japanese activities and plans in fusion technology. Fusion Sci Technol 52:347–356

    Google Scholar 

  • Zakharov LE, Li J, Wu Y (2010) Fusion-fission research facility (FERF) as a practical step toward hybrids. In: Proceedings of the 18th conference on nuclear engineering ICONE18, Xi'an, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Dolan, T.J., Waganer, L.M., Cadwallader, L.C. (2013). Power Plant Designs. In: Dolan, T. (eds) Magnetic Fusion Technology. Lecture Notes in Energy, vol 19. Springer, London. https://doi.org/10.1007/978-1-4471-5556-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5556-0_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5555-3

  • Online ISBN: 978-1-4471-5556-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics