Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1784 Accesses

Abstract

Various microcomponents, including microelectrodes and micro-optic and microfluidic components, can be fabricated in transparent materials by femtosecond laser direct writing. This chapter describes in detail techniques for integrating different types of microcomponents on a single substrate for constructing highly functional microfluidic, photonic, and optofluidic systems and devices. Several examples are described, including integration of microlenses and waveguides for beam collimation and focusing, integration of a micro-optical ring cavity and a microfluidic chamber for creating 3D microfluidic dye lasers, integration of microelectrodes and waveguide-based Mach–Zehnder interferometer in a lithium niobate (LiNbO3) crystal for constructing an optical modulator, and integration of micro-optic and microfluidic components in glass for optofluidic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589

    Article  Google Scholar 

  2. Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463

    Google Scholar 

  3. Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532

    Article  Google Scholar 

  4. Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748

    Article  Google Scholar 

  5. Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607

    Article  Google Scholar 

  6. Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45

    Article  Google Scholar 

  7. Wang Z, El-Ali J, Engelund M (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372–377

    Article  Google Scholar 

  8. Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704

    Article  Google Scholar 

  9. Wang Z, Sugioka K, Hanada Y et al (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955

    Article  Google Scholar 

  10. Cheng Y, Sugioka K, Midorikawa K (2006) Freestanding optical fibers fabricated in a glass chip by femtosecond laser micromachining for lab-on-a-chip application: erratum. Opt Express 14:11910

    Article  Google Scholar 

  11. Li LX, Nordin G, English J et al (2003) Small-area bends and beamsplitters for lowindex-contrast waveguides. Opt Express 11:282–290

    Article  Google Scholar 

  12. Cheng Y, Sugioka K, Midorikawa K et al (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009

    Article  Google Scholar 

  13. Helbo B, Kristensen A, Menon A (2003) A micro-cavity fluidic dye laser. J Micromech Microeng 13:307–311

    Article  Google Scholar 

  14. Li ZY, Zhang ZY, Emery T et al (2006) Single mode optofluidic distributed feedback dye laser. Opt Express 14:696–701

    Article  Google Scholar 

  15. Cheng Y, Sugioka K, Midorikawa K (2005) Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications. Appl Surf Sci 248:172–176

    Article  Google Scholar 

  16. Moon HJ, Chough YT, An K (2000) Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys Rev Lett 85:3161–3164

    Article  Google Scholar 

  17. Ramer OG (1982) Integrated optic electrooptic modulator electrode analysis. IEEE J Quant Electron 18:386–392

    Article  Google Scholar 

  18. Wooten EL, Kissa KM, Yi-Yan A et al (2000) A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant 6:69–82

    Article  Google Scholar 

  19. Lu YQ, Wan ZL, Wang Q et al (2000) Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Appl Phys Lett 77:3719–3721

    Article  Google Scholar 

  20. Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283

    Article  Google Scholar 

  21. Burghoff J, Grebing C, Nolte S et al (2006) Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl Phys Lett 89(3):081108

    Google Scholar 

  22. Thomas J, Heinrich M, Burghoff J et al (2007) Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl Phys Lett 91(3):151108

    Google Scholar 

  23. Binh LN (2006) Lithium niobate optical modulators Devices and applications. J Cryst Growth 288:180–187

    Article  Google Scholar 

  24. Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173

    Article  Google Scholar 

  25. Applegate RW, Squier J, Vested T et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426

    Article  Google Scholar 

  26. Bellouard Y, Said AA, Dugan M et al (2003) Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica. Proc Mater Res Soc Fall Meet Symp A (Mater Res Soc) 782:63–68

    Google Scholar 

  27. Maselli V, Grenier JR, Ho S et al (2009) Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt Express 17:11719–11729

    Article  Google Scholar 

  28. Vazquez RM, Osellame R, Nolli D et al (2009) Integration of femtosecond laser written optical waveguides in a lab-on-chip. Lab Chip 9:91–96

    Article  Google Scholar 

  29. Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318

    Article  Google Scholar 

  30. Schaap A, Bellouard Y, Rohrlack T et al (2011) Optofluidic lab-on-a-chip for rapid algae population screening. Biomed Opt Express 2:658–664

    Article  Google Scholar 

  31. Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243

    Article  Google Scholar 

  32. Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688

    Article  Google Scholar 

  33. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens Actuat B 61:100–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sugioka, K., Cheng, Y. (2014). Integration of Microcomponents. In: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications. SpringerBriefs in Applied Sciences and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5541-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5541-6_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5540-9

  • Online ISBN: 978-1-4471-5541-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics