Advertisement

Fabrication of Microfluidic Structures in Glass

Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Although laser drilling has long been used for producing straight one-dimensional (1D) holes in glass, it generally cannot be used to form 3D microchannels since thin channels become clogged with the debris produced during laser ablation. This chapter describes two approaches that have been developed to overcome this problem. The first is femtosecond-laser-assisted wet chemical etching, in which femtosecond laser irradiation is used to modify the chemical properties of glass and subsequent chemical etching is used to selectively remove the modified regions. The second approach is liquid-assisted femtosecond laser 3D drilling in which liquid is flowed through the channels to greatly enhance the removal rate of debris produced by laser ablation. This chapter also discusses several beam-shaping techniques for controlling the cross section of the microchannels. The cross-sectional shape of microchannels is significant in many microfluidic applications because it determines the fluid dynamics and biological functions of microchannels.

Keywords

Femtosecond Laser Etch Rate Microfluidic Channel Femtosecond Laser Pulse Femtosecond Laser Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators, B 1:244–248CrossRefGoogle Scholar
  2. 2.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  3. 3.
    McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRefGoogle Scholar
  4. 4.
    Stookey SD (1950) Photosensitive gold glass and method of making it. US Pat No 2515937, 18 Jul 1950Google Scholar
  5. 5.
    Fuqua P, Janson SW, Hansen WW et al (1999) Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques. Proc SPIE 3618:213–220CrossRefGoogle Scholar
  6. 6.
    Hansen WW, Janson SW, Helvajian H (1997) Direct-write UV-laser microfabrication of 3D structures in lithium-aluminosilicate glass. Proc SPIE 2991:104–112CrossRefGoogle Scholar
  7. 7.
    Kondo Y, Qiu JR, Mitsuyu T et al (1999) Three-dimensional microdrilling of glass by multiphoton process and chemical etching. J Jpn Appl Phys 38:L1146–L1148CrossRefGoogle Scholar
  8. 8.
    Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRefGoogle Scholar
  9. 9.
    Cheng Y, Sugioka K, Masuda M et al (2003) 3D microstructuring inside Foturan glass by femtosecond laser. RIKEN Rev 50:101–106Google Scholar
  10. 10.
    Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027CrossRefGoogle Scholar
  11. 11.
    Hongo T, Sugioka K, Niino H et al (2005) Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser. J Appl Phys 97:063517(4)Google Scholar
  12. 12.
    Cheng Y, Sugioka K, Midorikawa K et al (2005) Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications. Appl Surf Sci 248:172–176CrossRefGoogle Scholar
  13. 13.
    Sugioka K, Masuda M, Hongo T et al (2004) Three-dimensional microfluidic structure embedded in photostructurable glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:815–817Google Scholar
  14. 14.
    Marcinkevičius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRefGoogle Scholar
  15. 15.
    Bellouard Y, Said A, Dugan M et al (2004) Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12:2120–2129CrossRefGoogle Scholar
  16. 16.
    Hnatovsky C, Taylor RS, Simova E et al (2005) Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt Lett 30:1867–1869CrossRefGoogle Scholar
  17. 17.
    Shimotsuma Y, Kazansky PG, Qiu J et al (2003) Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett 91:247405(4)Google Scholar
  18. 18.
    Bhardwaj VR, Simova E, Rajeev PP et al (2006) Optically produced arrays of nano-planes inside fused silica. Phys Rev Lett 96:057404(4)Google Scholar
  19. 19.
    Kiyama S, Matsuo S, Hashimoto S et al (2009) Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates. J Phys Chem C 113:11560–11566CrossRefGoogle Scholar
  20. 20.
    Vishnubhatla KC, Bellini N, Ramponi R et al (2009) Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching. Opt Express 17:8685–8695CrossRefGoogle Scholar
  21. 21.
    He F, Cheng Y, Xu Z et al (2010) Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. Opt Lett 35:282–284CrossRefGoogle Scholar
  22. 22.
    Li Y, Itoh K, Watanabe W et al (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26:1912–1914CrossRefGoogle Scholar
  23. 23.
    Kim TN, Campbell K, Groisman A et al (2005) Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl Phys Lett 86:201106(3)Google Scholar
  24. 24.
    An R, Li Y, Dou Y et al (2005) Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 13:1855–1859CrossRefGoogle Scholar
  25. 25.
    Hwang DJ, Choi TY, Grigoropoulos CP et al (2004) Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl Phys A 79:605–612CrossRefGoogle Scholar
  26. 26.
    Ke K, Hasselbrink EF Jr, Hunt AJ et al (2005) Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates. Anal Chem 77:5083–5088CrossRefGoogle Scholar
  27. 27.
    Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227CrossRefGoogle Scholar
  28. 28.
    Ju Y, Liao Y, Zhang L et al (2012) Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluid Nanofluid 11:111–117CrossRefGoogle Scholar
  29. 29.
    Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRefGoogle Scholar
  30. 30.
    Hanada Y, Sugioka K, Ishikawa IS et al (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115CrossRefGoogle Scholar
  31. 31.
    Osellame R, Taccheo S, Marangoni M et al (2003) Femtosecond writing of active optical waveguides with astigmatically shaped beams. J Opt Soc Am B 20:1559–1567CrossRefGoogle Scholar
  32. 32.
    Cheng Y, Sugioka K, Midorikawa K et al (2003) Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt Lett 28:55–57CrossRefGoogle Scholar
  33. 33.
    Sugioka K, Cheng Y, Midorikawa K et al (2006) Femtosecond laser microprocessing with three-dimensionally isotropic spatial resolution using crossed-beam irradiation. Opt Lett 31:208–210CrossRefGoogle Scholar
  34. 34.
    He F, Xu H, Cheng Y et al (2010) Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35:1106–1108CrossRefGoogle Scholar
  35. 35.
    Charles GD, Michael G, Block E et al (2012) Squier intuitive analysis of space-time focusing with double-ABCD calculation. Opt Express 20:14244–14259CrossRefGoogle Scholar
  36. 36.
    He F, Cheng Y, Lin J et al (2011) Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining. New J Phys 13:083014 (13)Google Scholar
  37. 37.
    Ams M, Marshall G, Spence D et al (2005) Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express 13:5676–5681CrossRefGoogle Scholar
  38. 38.
    Sowa S, Watanabe W, Tamaki T et al (2006) Symmetric waveguides in poly (methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 14:291–297CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations