Consequential Life Cycle Environmental Impact Assessment

Part of the Green Energy and Technology book series (GREEN)


This chapter describes the life cycle approach to energy chain analysis and the methodology of life cycle assessment (LCA). Consequential LCA (cLCA) is discussed in comparison with attributional LCA (aLCA). The methodological approach of environmental impact assessment (EIA) is also presented. The methods, with emphasis on cLCA, are discussed in the context of improving the knowledge of unintended consequences from various forms of renewable energy. The chapter presents a series of examples where cLCA are used to predict in advance, unanticipated impacts of different forms of renewable energy technologies throughout their life cycle, with particularly focus on the impact of biofuels production.


Life Cycle Assessment Environmental Impact Assessment Environmental Impact Assessment Life Cycle Assessment Study Direct Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Althaus H, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M and Nemecek T (2010) Implementation of life cycle impact assessment methods. Dübendorf, CH: Swiss Centre for Life Cycle Inventories. Accessed 02 Aug 2013
  2. 2.
    Althaus H, Doka G, Dones R, Hischier R, Hellweg S, Nemecek T, Rebitzer G and Spielmann M (2007) Overview and methodology. Dübendorf, CH: Swiss Centre for Life Cycle Inventories. Accessed 17 sep 2013
  3. 3.
    Baumann H (1998) Life cycle assessment and decision making: theories and practices. Technical Environmental Planning. AFR report. Göteborg, Sweden: Chalmers University of TechnologyGoogle Scholar
  4. 4.
    Brookes A (2009) Environmental risk assessment and risk management (second.). In: Morris P, Therivel R (eds) Methods of environmental impact assessment. SPON PRESS, London. Taylor & Francis Group, pp 351–364. Accessed 17 sep 2013
  5. 5.
    Chen I-C, Fukushima Y, Kikuchi Y, Hirao M (2012) A graphical representation for consequential life cycle assessment of future technologies—Part 1: methodological framework. Int J Life Cycle Assess 17:119–125CrossRefGoogle Scholar
  6. 6.
    Chen I-C, Fukushima Y, Kikuchi Y, Hirao M (2012) A graphical representation for consequential life cycle assessment of future technologies—Part 2: two case studies on choice of technologies and evaluation of technology improvements. Int J Life Cycle Assess 17:270–276CrossRefGoogle Scholar
  7. 7.
    Climatop (2011) Climatop includes sustainability criteria. Climatop—intelligent, climatefriendly products. Accessed 30 May 2013
  8. 8.
    Curran M (2008) Life-cycle assessment. Human Ecology. Elsevier, pp 2168–2174Google Scholar
  9. 9.
    Dandres T, Gaudreault C, Tirado-Seco P, Samson R (2011) Assessing non-marginal variations with consequential LCA: application to European energy sector. Renew Sustain Energy Rev 15(6):3121–3132CrossRefGoogle Scholar
  10. 10.
    Dandres T, Gaudreault C, Tirado-Seco P, Samson R (2012) Macroanalysis of the economic and environmental impacts of a 2005–2025 European Union bioenergy policy using the GTAP model and life cycle assessment. Renew Sustain Energy Rev 16(2):1180–1192CrossRefGoogle Scholar
  11. 11.
    Dandres T (2012) Développement d’une méthode d’analyse du cycle de vie conséquentielle prospective macroscopique: évaluation d’une politique de bioénergie dans l’union européenne à l’horizon 2025. Thèse présentée en vue de l’obtention du diplôme de philosophiae doctor (génie chimique), Montreal, École Polytechnique De Montréal, Université De Montréal. Accessed 17 sep 2013
  12. 12.
    Earles J, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16(5):114–453CrossRefGoogle Scholar
  13. 13.
    Edwards R, Griesemann J-C, Larivé J-F and Mahieu V (2008) Well-to-wheels analysis of future automotive fuels and powertrains in the European context. CONCAWE, EUCAR and JRCGoogle Scholar
  14. 14.
    Ekvall T (1999) System expansion and allocation in life cycle assessment—with implications for wastepaper management. PhD Thesis, Gothenburg, Sweden, Chalmers University of TechnologyGoogle Scholar
  15. 15.
    Ekvall T (2002) Cleaner production tools: LCA and beyond. J Cleaner Prod 10:403–406CrossRefGoogle Scholar
  16. 16.
    Ekvall T, Weidema B (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9(3):161–171CrossRefGoogle Scholar
  17. 17.
    European Commission (1994) Biofuels. Report EUR 15647 EN. Brussels: DG XIIGoogle Scholar
  18. 18.
    European Commission (1995) ExternE: Externalities of Energy. Prepared by ETSU and IER for DGXII: Science, Research & Development, Study EUR 16520-5 EN, LuxembourgGoogle Scholar
  19. 19.
    European Commission (2013) Environmental assessment. European Commission, Brussels. Accessed 29 April 2013
  20. 20.
    Finnveden G, Hauschild M, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1–21CrossRefGoogle Scholar
  21. 21.
    Fischer TB (2002) Strategic environmental assessment in transport and land use planning. Earthscan Publications, LondonGoogle Scholar
  22. 22.
    Flénet F (2010) Lessons and limits of the study on the impact of the first generation biofuels coordinated by the French environment and energy management agency [Enseignements et limites de l’étude sur l’impact des biocarburants de première génération coordonnée par l’Ademe]. OCL—Oleagineux Corps Gras Lipides 17(3):127–132Google Scholar
  23. 23.
    Guinee J, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96CrossRefGoogle Scholar
  24. 24.
    Guinee J (ed) (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic Publishers, DordrechtGoogle Scholar
  25. 25.
    IPCC (2012) Renewable energy sources and climate change mitigation. Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Accessed 17 sep 2013
  26. 26.
    Jeswani H, Azapagic A, Schepelmann P, Ritthoff M (2010) Options for broadening and deepening the LCA approaches. J Cleaner Prod 18(2):120–127CrossRefGoogle Scholar
  27. 27.
    Jury C, Benetto E, Koster D, Schmitt B, Welfring J (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenergy 34(1):54–66CrossRefGoogle Scholar
  28. 28.
    Kaplan S, Garrick B (1981) On the quantitative definition of risk. Risk Anal 1:1–27CrossRefGoogle Scholar
  29. 29.
    Kim H, Kim S, Dale B (2009) Biofuels, land use change and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43(3):961–967CrossRefGoogle Scholar
  30. 30.
    Kuemmel B, Krüger Nielsen S, Sørensen B (1997) Life-cycle analysis of energy systems. Roskilde University Press, RoskildeGoogle Scholar
  31. 31.
    Melamu R, Blottnitz H (2011) 2nd Generation biofuels a sure bet? A life cycle assessment of how things could go wrong. J Cleaner Prod 19(2–3):138–144CrossRefGoogle Scholar
  32. 32.
    Morris P and Therivel R (eds) (2009) Methods of environmental impact assessment (Second). SPON PRESS, London. Taylor & Francis Group. Accessed 17 sep 2013
  33. 33.
    Nieuwlaar E (2004) Life cycle assessment and energy systems. Encyclopedia of energy. Elvevier, pp 647–654Google Scholar
  34. 34.
    Rehl T, Lansche J, Muller J (2012) Life cycle assessment of energy generation from biogas—attributional versus consequential approach. Renew Sustain Energy Rev 16(6):3766–3775CrossRefGoogle Scholar
  35. 35.
    Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment. J Cleaner Prod 17(Suppl 1):46–56CrossRefGoogle Scholar
  36. 36.
    Reinhard J, Zah R (2011) Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass Bioenergy 35(6):2361–2373CrossRefGoogle Scholar
  37. 37.
    Reisdorph D (2011) Rebound effects & monetizing environmental impacts. Paper presented at the Life Cycle Assessment (LCA) XI, October 4. Power Point. Chicago, ILGoogle Scholar
  38. 38.
    Sanden B, Karlstroem M (2007) Positive and negative feedback in consequential life-cycle assessment. J Cleaner Prod 15(15):1469–1481CrossRefGoogle Scholar
  39. 39.
    Schmidt J (2010) Comparative life cycle assessment of rapeseed oil and palm oil. Int J Life Cycle Assess 15(2):183–197CrossRefGoogle Scholar
  40. 40.
    Schmidt J, Weidema B (2008) Shift in the marginal supply of vegetable oil. Int J Life Cycle Assess 13(3):235–239CrossRefGoogle Scholar
  41. 41.
    Silalertruksa T, Gheewala S, Sagisaka M (2009) Impacts of Thai bio-ethanol policy target on land use and greenhouse gas emissions. Appl Energy 86(Suppl 1):170–177CrossRefGoogle Scholar
  42. 42.
    Soimakallio S, Kiviluoma J, Saikku L (2011) The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment)—a methodological review. Energy 36(12):6705–6713CrossRefGoogle Scholar
  43. 43.
    Sokka L, Soimakallio S (2009) Assessing the life cycle greenhouse gas emissions of biorefineries. Paper presented at the VTT Symposium (Valtion Teknillinen Tutkimuskeskus). Technical Research Centre, Finland: VTT, pp 17–26.;jsessionid=A0F426CA8D507015D9B687F35D37B9AF. Accessed 17 sep 2013 45.
  44. 44.
    Sovacool B, Bulan L (2013) They’ll be dammed: the sustainability implications of the Sarawak Corridor of Renewable Energy (SCORE) in Malaysia. Sustain Sci 8:121–133CrossRefGoogle Scholar
  45. 45.
    Thiesen J, Christensen T, Kristensen T, Andersen R, Brunoe B, Gregersen T, Thrane M, Weidema B (2008) Rebound effects of price differences. Int J Life Cycle Assess 13(2):104–114CrossRefGoogle Scholar
  46. 46.
    Tillman A-M (2000) Significance of decision-making for LCA methodology. Environ Impact Assess Rev 20:113–123CrossRefGoogle Scholar
  47. 47.
    Tukker A (2000) Life cycle assessment as a tool in environmental impact assessment. Environ Impact Assess Rev 20:435–456CrossRefGoogle Scholar
  48. 48.
    Weidema B, Hischier R, Althaus H, Bauer C, Doka G, Dones R, Frischknecht R, Jungbluth N, Nemecek T, Primas A, Wernet G (2009) Code of practice. Swiss Centre for Life Cycle Inventories, Dübendorf. Accessed 17 sep 2013
  49. 49.
    Wolf M, Pant R, Chomkhamsri K, Sala S, Pennington D (2012) The International Reference Life Cycle Data System (ILCD) Handbook. Towards more sustainable production and consumption for a resource-efficient Europe. European Commission, Ispra. Joint Research Centre. Institute for Environment and SustainabilityGoogle Scholar
  50. 50.
    Zamagni A, Guinee J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17:904–918CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Western Norway Research InstituteKaupangerNorway

Personalised recommendations