Reaction-Diffusion Systems with Many Components

  • Juncheng Wei
  • Matthias Winter
Part of the Applied Mathematical Sciences book series (AMS, volume 189)

Abstract

We consider some large reaction-diffusion systems which consist of more than two components. We begin with the hypercycle of Eigen and Schuster which has an arbitrary number of components. For this system we determine the maximum number of components for which a stable cluster is possible. Next we study a five-component system for which we will prove the existence and stability of mutually exclusive spikes, i.e. spikes which for different components are located at different positions. Then we consider systems with multiple activators and substrates and derive conditions for stable spiky patterns. Finally, we investigate a consumer chain model, which is a three-component system with two small diffusion constants and prove the existence and stability of a new type of clustered spiky pattern.

References

  1. 16.
    Bettencourt, L., West, G.: A unified theory of urban living. Nature 467, 912–913 (2010) CrossRefGoogle Scholar
  2. 19.
    Boerlijst, M.C., Hogeweg, P.: Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Physica D 48, 17–28 (1991) CrossRefMATHGoogle Scholar
  3. 20.
    Bohn, H.: Interkalare Regeneration und segmentale Gradienten bei den Extremitäten von Leucophaea-Larven. Wilhelm Roux’ Arch. 165, 303–341 (1970) CrossRefGoogle Scholar
  4. 32.
    Cronhjort, M.B., Blomberg, C.: Hypercycles versus parasites in a two-dimensional partial differential equations model. J. Theor. Biol. 169, 31–49 (1994) CrossRefGoogle Scholar
  5. 33.
    Cronhjort, M.B., Blomberg, C.: Cluster compartmentalization may provide resistance to parasites for catalytic networks. Physica D 101, 289–298 (1997) CrossRefMATHGoogle Scholar
  6. 60.
    Eigen, M., Schuster, P.: The hypercycle. A principle of natural self organization. Part A. Emergence of the hypercycle. Naturwissenschaften 64, 541–565 (1977) CrossRefGoogle Scholar
  7. 61.
    Eigen, M., Schuster, P.: The hypercycle. A principle of natural self organization. Part B. The abstract hypercycle. Naturwissenschaften 65, 7–41 (1978) CrossRefGoogle Scholar
  8. 62.
    Eigen, M., Schuster, P.: The hypercycle. A principle of natural self organization. Part C. The realistic hypercycle. Naturwissenschaften 65, 341–369 (1978) CrossRefGoogle Scholar
  9. 63.
    Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Selforganization. Springer, Berlin (1979) CrossRefGoogle Scholar
  10. 145.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982) Google Scholar
  11. 154.
    Meinhardt, H., Gierer, A.: Generation and regeneration of sequences of structures during morphogenesis. J. Theor. Biol. 85, 429–450 (1980) MathSciNetCrossRefGoogle Scholar
  12. 227.
    Takagi, H., Kaneko, K.: Differentiation and replication of spots in a reaction-diffusion system with many chemicals. Europhys. Lett. 56, 145–151 (2001) CrossRefGoogle Scholar
  13. 236.
    Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs, vol. 140. Am. Math. Soc., Providence (1994) Google Scholar
  14. 245.
    Wei, J.: On the construction of single-peaked solutions to a singularly perturbed Dirichlet problem. J. Differ. Equ. 129, 315–333 (1996) CrossRefMATHGoogle Scholar
  15. 260.
    Wei, J., Winter, M.: On a two-dimensional reaction-diffusion system with hypercyclical structure. Nonlinearity 13, 2005–2032 (2000) MathSciNetCrossRefMATHGoogle Scholar
  16. 263.
    Wei, J., Winter, M.: Critical threshold and stability of cluster solutions for large reaction-diffusion systems in \({\mathbb {R}}\). SIAM J. Math. Anal. 33, 1058–1089 (2002) MathSciNetCrossRefMATHGoogle Scholar
  17. 264.
    Wei, J., Winter, M.: A nonlocal eigenvalue problem and the stability of spikes for reaction-diffusion systems with fractional reaction rates. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 1529–1543 (2003) MathSciNetCrossRefMATHGoogle Scholar
  18. 275.
    Wei, J., Winter, M.: Mutually exclusive spiky pattern and segmentation modeled by the five-component Meinhardt-Gierer system. SIAM J. Appl. Math. 69, 419–452 (2008) MathSciNetCrossRefMATHGoogle Scholar
  19. 278.
    Wei, J., Winter, M.: Stability of cluster solutions in a reaction-diffusion system with four morphogens on the real line. SIAM J. Math. Anal. 42, 2818–2841 (2010) MathSciNetCrossRefMATHGoogle Scholar
  20. 280.
    Wei, J., Winter, M.: Stability of cluster solutions in a cooperative consumer chain model. J. Math. Biol. (2012). doi: 10.1007/s00285-012-0616-8 MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Juncheng Wei
    • 1
  • Matthias Winter
    • 2
  1. 1.Department of MathematicsThe Chinese University of Hong KongHong KongChina
  2. 2.Department of Mathematical SciencesBrunel UniversityUxbridgeUK

Personalised recommendations