• Juncheng Wei
  • Matthias Winter
Part of the Applied Mathematical Sciences book series (AMS, volume 189)


We introduce general two-component reaction-diffusion systems and Turing instability. Then we specialise on the Gierer-Meinhardt system for hydra. We discuss amplitude equations, order parameters and analytical methods for spiky patterns.


Convection Depression Manifold 


  1. 13.
    Berding, C., Haken, H.: Pattern formation in morphogenesis. Analytical treatment of the Gierer-Meinhardt system on a sphere. J. Math. Biol. 14, 133–151 (1982) MathSciNetCrossRefMATHGoogle Scholar
  2. 17.
    Blair, S.S.: Limb development: marginal fringe benefits. Curr. Biol. 7, R686–R690 (1997) CrossRefGoogle Scholar
  3. 30.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971) MathSciNetCrossRefMATHGoogle Scholar
  4. 31.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973) MathSciNetCrossRefMATHGoogle Scholar
  5. 34.
    Cross, M., Hohenberg, P.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993) CrossRefGoogle Scholar
  6. 47.
    Doelman, A., Gardner, R.A., Kaper, T.J.: Stability analysis of singular patterns in the 1-D Gray-Scott model: a matched asymptotic approach. Physica D 122, 1–36 (1998) MathSciNetCrossRefMATHGoogle Scholar
  7. 48.
    Doelman, A., Eckhaus, W., Kaper, T.J.: Slowly modulated two-pulse solutions in the Gray-Scott model I: asymptotic construction and stability. SIAM J. Appl. Math. 61, 1080–1102 (2000) MathSciNetCrossRefMATHGoogle Scholar
  8. 49.
    Doelman, A., Gardner, R.A., Kaper, T.J.: Large stable pulse solutions in reaction-diffusion equations. Indiana Univ. Math. J. 50, 443–507 (2001) MathSciNetCrossRefMATHGoogle Scholar
  9. 51.
    Doelman, A., Gardner, R.A., Kaper, T.J.: A stability index analysis of 1-D patterns of the Gray-Scott model. Mem. Am. Math. Soc. 155(737), xii + 64 pp. (2002) Google Scholar
  10. 73.
    Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik (Berlin) 12, 30–39 (1972) CrossRefGoogle Scholar
  11. 75.
    Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983) CrossRefGoogle Scholar
  12. 76.
    Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilites to the system A+2B→3B, BC. Chem. Eng. Sci. 39, 1087–1097 (1984) CrossRefGoogle Scholar
  13. 84.
    Haken, H., Olbrich, H.: Analytical treatment of pattern formation in the Gierer-Meinhardt model of morphogenesis. J. Math. Biol. 6, 317–331 (1978) MathSciNetCrossRefMATHGoogle Scholar
  14. 122.
    Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction-diffusion systems—reductive perturbation approach. Prog. Theor. Phys. 54, 687–699 (1975) CrossRefGoogle Scholar
  15. 145.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982) Google Scholar
  16. 152.
    Meinhardt, H.: The Algorithmic Beauty of Sea Shells, 4th edn. Springer, Berlin (2009) CrossRefGoogle Scholar
  17. 155.
    Meinhardt, H., Klingler, M.: A model for pattern formation on the shells of molluscs. J. Theor. Biol. 126, 63–69 (1987) MathSciNetCrossRefGoogle Scholar
  18. 157.
    Mielke, A.: The Ginzburg-Landau equation in its role as a modulation equation. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 759–834. Elsevier, Amsterdam (2002) Google Scholar
  19. 158.
    Mielke, A., Schneider, G.: Attractors for modulation equations on unbounded domains: existence and comparison. Nonlinearity 8, 743–768 (1995) MathSciNetCrossRefMATHGoogle Scholar
  20. 159.
    Mimura, M., Nishiura, Y.: Spatial patterns for an interaction-diffusion equation in morphogenesis. J. Math. Biol. 7, 243–263 (1979) MathSciNetCrossRefMATHGoogle Scholar
  21. 166.
    Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, Berlin (2003) Google Scholar
  22. 168.
    Ni, W.-M.: Diffusion, cross-diffusion, and their spike-layer steady states. Not. Am. Math. Soc. 45, 9–18 (1998) MATHGoogle Scholar
  23. 183.
    Nishiura, Y., Fujii, H.: Stability of singularly perturbed solutions to systems of reaction-diffusion equations. SIAM J. Math. Anal. 18, 1726–1770 (1987) MathSciNetCrossRefMATHGoogle Scholar
  24. 214.
    Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400 (1979) MathSciNetCrossRefGoogle Scholar
  25. 225.
    Takagi, I.: Stability of bifurcating solutions of the Gierer-Meinhardt system. Tohoku Math. J. 31, 221–246 (1979) MathSciNetCrossRefMATHGoogle Scholar
  26. 228.
    Taniguchi, M.: A uniform convergence theorem for singular limit eigenvalue problems. Adv. Differ. Equ. 8, 29–54 (2003) MATHGoogle Scholar
  27. 232.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 237, 37–72 (1952) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Juncheng Wei
    • 1
  • Matthias Winter
    • 2
  1. 1.Department of MathematicsThe Chinese University of Hong KongHong KongChina
  2. 2.Department of Mathematical SciencesBrunel UniversityUxbridgeUK

Personalised recommendations