Advertisement

Introduction

  • Juncheng Wei
  • Matthias Winter
Part of the Applied Mathematical Sciences book series (AMS, volume 189)

Abstract

We introduce general two-component reaction-diffusion systems and Turing instability. Then we specialise on the Gierer-Meinhardt system for hydra. We discuss amplitude equations, order parameters and analytical methods for spiky patterns.

Keywords

Pattern Formation Neumann Boundary Condition Amplitude Equation Turing Instability Homogeneous Steady State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 13.
    Berding, C., Haken, H.: Pattern formation in morphogenesis. Analytical treatment of the Gierer-Meinhardt system on a sphere. J. Math. Biol. 14, 133–151 (1982) MathSciNetCrossRefMATHGoogle Scholar
  2. 17.
    Blair, S.S.: Limb development: marginal fringe benefits. Curr. Biol. 7, R686–R690 (1997) CrossRefGoogle Scholar
  3. 30.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971) MathSciNetCrossRefMATHGoogle Scholar
  4. 31.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973) MathSciNetCrossRefMATHGoogle Scholar
  5. 34.
    Cross, M., Hohenberg, P.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993) CrossRefGoogle Scholar
  6. 47.
    Doelman, A., Gardner, R.A., Kaper, T.J.: Stability analysis of singular patterns in the 1-D Gray-Scott model: a matched asymptotic approach. Physica D 122, 1–36 (1998) MathSciNetCrossRefMATHGoogle Scholar
  7. 48.
    Doelman, A., Eckhaus, W., Kaper, T.J.: Slowly modulated two-pulse solutions in the Gray-Scott model I: asymptotic construction and stability. SIAM J. Appl. Math. 61, 1080–1102 (2000) MathSciNetCrossRefMATHGoogle Scholar
  8. 49.
    Doelman, A., Gardner, R.A., Kaper, T.J.: Large stable pulse solutions in reaction-diffusion equations. Indiana Univ. Math. J. 50, 443–507 (2001) MathSciNetCrossRefMATHGoogle Scholar
  9. 51.
    Doelman, A., Gardner, R.A., Kaper, T.J.: A stability index analysis of 1-D patterns of the Gray-Scott model. Mem. Am. Math. Soc. 155(737), xii + 64 pp. (2002) Google Scholar
  10. 73.
    Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik (Berlin) 12, 30–39 (1972) CrossRefGoogle Scholar
  11. 75.
    Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983) CrossRefGoogle Scholar
  12. 76.
    Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilites to the system A+2B→3B, BC. Chem. Eng. Sci. 39, 1087–1097 (1984) CrossRefGoogle Scholar
  13. 84.
    Haken, H., Olbrich, H.: Analytical treatment of pattern formation in the Gierer-Meinhardt model of morphogenesis. J. Math. Biol. 6, 317–331 (1978) MathSciNetCrossRefMATHGoogle Scholar
  14. 122.
    Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction-diffusion systems—reductive perturbation approach. Prog. Theor. Phys. 54, 687–699 (1975) CrossRefGoogle Scholar
  15. 145.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982) Google Scholar
  16. 152.
    Meinhardt, H.: The Algorithmic Beauty of Sea Shells, 4th edn. Springer, Berlin (2009) CrossRefGoogle Scholar
  17. 155.
    Meinhardt, H., Klingler, M.: A model for pattern formation on the shells of molluscs. J. Theor. Biol. 126, 63–69 (1987) MathSciNetCrossRefGoogle Scholar
  18. 157.
    Mielke, A.: The Ginzburg-Landau equation in its role as a modulation equation. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 759–834. Elsevier, Amsterdam (2002) Google Scholar
  19. 158.
    Mielke, A., Schneider, G.: Attractors for modulation equations on unbounded domains: existence and comparison. Nonlinearity 8, 743–768 (1995) MathSciNetCrossRefMATHGoogle Scholar
  20. 159.
    Mimura, M., Nishiura, Y.: Spatial patterns for an interaction-diffusion equation in morphogenesis. J. Math. Biol. 7, 243–263 (1979) MathSciNetCrossRefMATHGoogle Scholar
  21. 166.
    Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, Berlin (2003) Google Scholar
  22. 168.
    Ni, W.-M.: Diffusion, cross-diffusion, and their spike-layer steady states. Not. Am. Math. Soc. 45, 9–18 (1998) MATHGoogle Scholar
  23. 183.
    Nishiura, Y., Fujii, H.: Stability of singularly perturbed solutions to systems of reaction-diffusion equations. SIAM J. Math. Anal. 18, 1726–1770 (1987) MathSciNetCrossRefMATHGoogle Scholar
  24. 214.
    Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400 (1979) MathSciNetCrossRefGoogle Scholar
  25. 225.
    Takagi, I.: Stability of bifurcating solutions of the Gierer-Meinhardt system. Tohoku Math. J. 31, 221–246 (1979) MathSciNetCrossRefMATHGoogle Scholar
  26. 228.
    Taniguchi, M.: A uniform convergence theorem for singular limit eigenvalue problems. Adv. Differ. Equ. 8, 29–54 (2003) MATHGoogle Scholar
  27. 232.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 237, 37–72 (1952) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Juncheng Wei
    • 1
  • Matthias Winter
    • 2
  1. 1.Department of MathematicsThe Chinese University of Hong KongHong KongChina
  2. 2.Department of Mathematical SciencesBrunel UniversityUxbridgeUK

Personalised recommendations