Skip to main content

Insulation Materials Made with Vegetable Fibres

  • Chapter
  • First Online:
Nearly Zero Energy Building Refurbishment

Abstract

Vegetable fibres are finding increasing applications in building industry due to their economic, energy and environmental sustainability. In view of utilization of insulation materials made from vegetable fibres for near zero energy buildings, this chapter presents a summary of physical, mechanical and chemical characteristics of vegetable fibres incorporating building insulating properties with recommendations and suggestions. Subsequently, relevant issues of the raw materials and the manufacturing processes that lead to certain common characteristics are highlighted. The greatest challenge in working with vegetable fibres is their large variations in thermal properties and characteristics dependent on their complex architectures of geometrical structures. Mathematical models are of great importance in understanding and predicting the thermal performances of the fibres and their global responses in the building system. Coupled heat and mass transfer through a fibrous insulation in buildings is therefore studied. The most important vegetable fibrous composites, properties of the composites and their applications in buildings are briefly reviewed also. The chapter provides a guide to the fundamentals and latest developments in building insulation technology for vegetable fibrous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • RIL (1984) Lämmön ja kosteudeneristys, Helsinki, Finland (in Finnish), Suomen Rakennusinsinöörien Liitto

    Google Scholar 

  • The Directive 2010/31/EU of the European Parliament and Council of 19 May 2010 on the energy performance of buildings. In: UNION, O. J. O. T. E. (ed.)

    Google Scholar 

  • ISO 6946:2007 (1996) Building components and building elements—Thermal resistance and thermal transmittance—Calculation method. Berlin, Germany

    Google Scholar 

  • EC (2005) Biomass: green energy for Europe

    Google Scholar 

  • NMAB (1994) Hierarchical structures in biology as a guide for new materials technology, The National Academies Press, Washington DC

    Google Scholar 

  • Abdou OA, Murali K, Morsi A (1996) Thermal performance evaluation of a prefabricated fiber-reinforced plastic building envelope system. Energ Build 24:77–83

    Google Scholar 

  • Agopyan V, JR HS, John VM, Cincotto MA (2005) Developments on vegetable fibre–cement based materials in Sao Paulo, Brazil: an overview. Cement and Concrete Composites, 27, 527–536

    Google Scholar 

  • Agoudjil B, Benchabane A, Boudenne A, Ibos L, Fois M (2011) Renewable materials to reduce building heat loss: characterization of date palm wood. Energ Build 43:491–497

    Google Scholar 

  • Agriculture U. S. D. O. (2000) Harvesting, retting, and fiber separation. Industrial Hemp in the United States. United States Department of Agriculture Economic Research Service

    Google Scholar 

  • Ardanuy M, Antunes M, Velasco JI (2012) Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams. Waste Manage (Oxford) 32:256–263

    Google Scholar 

  • Ardente F, Beccali M, Cellura M, Mistretta M (2008) Building energy performance: A LCA case study of kenaf-fibres insulation board. Energ Build 40:1–10

    Google Scholar 

  • Ashour T, Georg H, Wu W (2010) Performance of straw bale wall: a case of study. Energ Build 43:1960–1967

    Google Scholar 

  • Bachmat Y (1972) Spatial macroscopization of processes in heterogeneous systems. Israel J Tech 10:391–403

    MathSciNet  Google Scholar 

  • Bachmat Y, Bear J (1986) Macroscopic modelling of transport phenomena in porous media, 1: the continuum approach. Transp Porous Media 1:213–240

    Google Scholar 

  • Baillis D, Sacadura J-F (2000) Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. J Quant Spectrosc Radiat Transfer 67:327–363

    Google Scholar 

  • Banklvall CG (1973) Summary of Heat Transfer in Fibrous materials. Document D4. J Testing Eval 1:235–243

    Google Scholar 

  • Bao L-R, Yee AF (2002) Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part II-woven and hybrid composites. Compos Sci Technol 62:2111–2119

    Google Scholar 

  • Batycky RP, Brenner H (1997) Thermal macrotransport processes in porous media. Rev Adv Water Res 20:95–110

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. USA, Elsevier, New York

    MATH  Google Scholar 

  • Beckwith SW (2003) Natural fiber reinforcement materials: lower cost fiber technology for composites. Applications. Composites Fabrication, November/December, 12–16

    Google Scholar 

  • Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rep 222:145–197

    Google Scholar 

  • Binici H, Aksogan O, Shah T (2005) Investigation of fibre reinforced mud brick as a building material. Construct Build Mat 19(4):313–318

    Google Scholar 

  • Bisanda ETN (1993) The manufacture of roofing panels from sisal fibre reinforced composites. J Mater Process Technol 38:369–380

    Google Scholar 

  • Bisanda ETN, Ansell MP (1992) Properties of sisal–CNSL composites. J Mater Sci 27:1690–1700

    Google Scholar 

  • Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers biopolymers and biocomposites. Boca Raton Taylor and Francis

    Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Google Scholar 

  • Boermans T, Bettgenhauser K, Hermelink A, Schimschar S (2011) Cost optimal building performance requirements. Calculation methodology for reporting on national energy performance requirements on the basis of cost optimality within the framework of the EPBD, eceee, May 2011, http://www.eceee.org/

  • Bojic M, Yik F, Leung W (2002) Thermal insulation of cooled spaced in high residential buildings in Hong Kong. Energy Convers Manage 43:165–183

    Google Scholar 

  • Bouhicha M, Aouissi F, Kenai S (2005) Performance of composite soil reinforced with barley straw. Cement Concrete Compos, 617–621

    Google Scholar 

  • Charoenvai S, Khedari J, Hirunlabh J, Asasutjarit C, Zeghmati B, Quenard D, Pratintong N (2005) Heat and moisture transport in durian fiber based lightweight construction materials. Sol Energy 78:543–553

    Google Scholar 

  • Chatterjee PK, Gupta BS (2002) Absorbent technology. Elsevier, Amsterdam

    Google Scholar 

  • Chen H, Besant RW, Tao Y (1997a) Two-dimensional air exf iltration and heat transfer through fiberglass insulation 1: numerical mode1 and experimental facility. HVAC R Research 3:197–213

    Google Scholar 

  • Chen H, Besant RW, Tao Y (1997b) Two-dimensional air exf iltration and heat transfer through fiberglass insulation 2: comparisons between simulations and experiments. HVAC R Research 3:215–232

    Google Scholar 

  • Cheng X, Fan J (2004) Simulation of heat and moisture transfer with phase change and mobile condensates in fibrous insulation. Int J Therm Sci 43:665–676

    Google Scholar 

  • Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72–79

    Google Scholar 

  • Cristaldi G, Latteri A, Recca G, Cicala G (2010) 17 Composites based on natural fibre fabrics. In: Dubrovski PD (ed) Woven Fabric Engineering. In Tech

    Google Scholar 

  • Crosson N (2012) Going natural means more than just insulation. Modern Methods of Construction [Online]

    Google Scholar 

  • Dam JEGV (1999) Optimisation of methods of fibre preparation from agricultural raw materials. Agrotech Res Ins, Wageningen

    Google Scholar 

  • Daryabeigi K (2000) Design of high-temperature multi-layer insulation for reusable launch vehicles. Ph.D. University of Virginia, Virginia

    Google Scholar 

  • Desideri U, Leonardi D, Arcioni L (2012) Analysis of different typologies of natural insulation materials with economic and performances evaluation of the same in building. Proceedings of ECOS 2012—the 25th international conference on efficiency, cost, optimization, Simulation and environmental impact of energy systems. Perugia, Italy

    Google Scholar 

  • Dufresne A (2008) Chapter 19–Cellulose-based composites and nanocomposites. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier

    Google Scholar 

  • Energy U. S. D. O (2010) Genomics: GTL Roadmap. In: U.S. Department of energy, O. O. S. (ed)

    Google Scholar 

  • Evseeva LE, Tanaeva SA (2004) Influence of impregnation on the thermal properties of heat-insulating fibrous materials. J Eng Phys Thermophys 77:99–102

    Google Scholar 

  • Extension E (2001) Engineering extension

    Google Scholar 

  • Fan J, Cheng X, Chen Y-S (2003) An experimental investigation of moisture absorption and condensation in fibrous insulations under low temperature. Exp Thermal Fluid Sci 27:723–729

    Google Scholar 

  • Fan J, Cheng X, Wen X, Sun W (2004) An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results. Int J Heat Mass Transf 47:2343–2352

    Google Scholar 

  • Farnworth B (1983) Mechanisms of heat flow through clothing insulation. Text Res J 53:717–725

    Google Scholar 

  • Forgacs J JS, In: Kadis S, Ciegler A, Ajl SJ (eds), Microbial Toxins. Academic Press, New York Inc vol 8 pp 95–128

    Google Scholar 

  • Foss WR, Bronkhorst CA, Bennett KA (2003) Simultaneous heat and mass transport in paper sheets during moisture sorption from humid air. Int J Heat Mass Transf 46:2875–2886

    MATH  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766

    Google Scholar 

  • Gibson PW, Lee C, Ko F, Reneker D (2007) Application of nanofiber technology to nonwoven thermal insulation. J Eng Fibers Fabr 2:32–40

    Google Scholar 

  • Graupner N, Herrmann AS, Mussig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Compos A Appl Sci Manuf 40:810–821

    Google Scholar 

  • Greenkorn RA (1983) Flow phenomena in porous media. Marcel Dekker, New York

    Google Scholar 

  • Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: A review. Materials Design, 42, 353–368

    Google Scholar 

  • Hager NE, Steere RC (1967) Radiant heat transfer in fibrous thermal insulation. J Appl Phys 38:4663–4668

    Google Scholar 

  • Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–352

    Google Scholar 

  • Hariharan ABA, Khalil HPSA (2005) Lignocellulose-based hybrid bilayer laminate composite: part I—studies on tensile and impact behavior of oil palm fiber–glass fiber-reinforced epoxy resin. J Compos Mater 39:663–684

    Google Scholar 

  • Hassanizadeh SM, Gray WG (1979) General conservation equations for multi-phase systems 1. averaging procedure. Adv Water Resour 2:131–144

    Google Scholar 

  • Hatta H, Taya M (1986) Equivalent inclusion method for steady state heat conduction in composites. Int J Eng Sci 24:1159–1172

    MATH  Google Scholar 

  • Hendricks TJ, Howell JR (1994) Absorption/Scattering coefficients and scattering phase functions in reticulated porous ceramics. In: Bayazitoglu Y (ed)

    Google Scholar 

  • Henriksson G, Akin DE, Rigsby LL, Patel N, Eriksson K-EL (1997) Influence of chelating agents and mechanical pretreatment on enzymatic retting of flax. Tex Res J 67:829–836

    Google Scholar 

  • Hens H, Janssens A (1998) Application of a new type of air and vapor retarder in a self-drying sloped roof with a cathedral ceiling. Thermal Perf Exte Env Build 7:15–27

    Google Scholar 

  • Hill CAS, Khalil HPSA, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crops Prod 8:53–63

    Google Scholar 

  • Hokoi S, Kumaran MK (1993) Experimental and analytical investigations of simultaneous heat and moisture transport through glass fiber insulation. J Thermal Insul Bldg Envs 16:263–292

    Google Scholar 

  • Holman JP (1997) Heat transfer. McGraw-Hill, Inc, New York

    Google Scholar 

  • Home T. C. C. E (2012) Fibre reinforced concrete

    Google Scholar 

  • Hyvarinen A, Meklin T, Vepsalainen A, Nevalainen A.(2002) Fungi and actinobacteria in moisture-damaged building materials — concentrations and diversity. Int Biodeter Biodegrad 49(1):27–37

    Google Scholar 

  • Idicula M, Joseph K, Thomas S (2010) Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites. J Reinf Plast Compos 29:12–29

    Google Scholar 

  • INFOLINK (2011) Natural fibre insulation—benefiting the built and natural environment [Online]. Australia’s Architecture, Building

    Google Scholar 

  • Jawaid M, Khalil HPSA (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18

    Google Scholar 

  • Karamanos A, Hadiarakou S, Papadopoulos AM (2008) The impact of temperature and moisture on the thermal performance of stone wool. Energ Build 40:1402–1411

    Google Scholar 

  • Karamanos A, Papadopoulos AM, Aravantinos D (2004) Heat transfer phenomena in fibrous insulating materials. In: Proceedings of 2004 WSEAS/IASME international conference on heat and mass transfer. Corfu, Greece

    Google Scholar 

  • Kazragis A (2005) Minimization of atmosphere pollution by utilizing cellulose waste. J Environ Eng Landscape Manage 13:81–90

    Google Scholar 

  • Khalil HPSA, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Google Scholar 

  • Klemens PG, Kim N (1985) Radiative heat transfer in inhomogeneous media and insulations. Thermal Conductivity 19:453–458

    Google Scholar 

  • Korjenic A, Petranek V, Zach J, Hroudova J (2011) Development and performance evaluation of natural thermal insulation materials composed of renewable resources. Energ Build 43:2518–2523

    Google Scholar 

  • Kymalainen H-R, Sjöberg A-M (2008) Flax and hemp fibres as raw materials for thermal insulations. Build Environ 43:1261–1269

    Google Scholar 

  • Larkin BK, Churchill SW (1959) Heat transfer by radiant through porous insulations AIChE J. 4:467–474

    Google Scholar 

  • Lazko J, Dupre B, Dheilly RM, Queneudec M (2011) Biocomposites based on flax short fibres and linseed oil. Ind Crops Prod 33:317–324

    Google Scholar 

  • Le ADT, Maalouf C, Mai TH, Wurtz E, Collet F (2010) Transient hygrothermal behaviour of a hemp concrete building envelope. Energ Build 42:1797–1806

    Google Scholar 

  • Lee SC, Cunnington GR (2000) Conduction and radiation heat transfer in high porosity fiber thermal insulation. J Thermophys Heat Transfer 14:121–136

    Google Scholar 

  • Lee SM (1991) International encyclopedia of composite. VCH, New York

    Google Scholar 

  • Li Y, Mai Y, Ye L (2000a) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055

    Google Scholar 

  • Li Y, Yan Y-W, Ye L (2000b) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055

    Google Scholar 

  • Lotz B (2006) A brief history of thermal insulation. RSI report

    Google Scholar 

  • Lu X (2002a) Modelling heat and moisture transfer in buildings: (I) Model program. Energ Build 34:1033–1043

    Google Scholar 

  • Lu X (2002b) Modelling heat and moisture transfer in buildings: (II) Application to indoor thermal and moisture control. Energ Build 34:1045–1054

    Google Scholar 

  • Luo X, Xu Q (2006) A new numerical implementation on 2D heat and moisture transfer through fabric. Appl Math Comput 174:1135–1150

    MathSciNet  MATH  Google Scholar 

  • Madurwar MV, Ralegaonkar RV, Mandavgane SA (2013) Application of agro-waste for sustainable construction materials: a review. Constr Build Mater 38:872–878

    Google Scholar 

  • Malkapuram R, Kumar V, Yuvraj SN (2008) Recent development in natural fibre reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Google Scholar 

  • Masoodi R, Tan H, Pillai KM (2010) Numerical simulation of liquid absorption in paper-like swelling porous media. AIChE J 56:2257–2267

    Google Scholar 

  • Merta I, Tschegg EK (2013) Fracture energy of natural fibre reinforced concrete. Constr Build Mater 40:991–997

    Google Scholar 

  • Milandri A, Asllanj F, Jeandel G, Roche JR (2002) Heat transfer by radiation and conduction in fibrous media without axial symmetry. J Quant Spectrosc Radiat Transfer 74:585–603

    Google Scholar 

  • Mishra SP (2000) A text book of fibre science and technology New Age International

    Google Scholar 

  • Modi DB, Bennes SM (1985) Moisture gain of spray-applied insulations and its effect on effective thermal conductivity—Part 1. J. Thermal Insulation 8:259–277

    Google Scholar 

  • Moriana R, Vilaplana F, Karlsson S, Ribes-Greus A (2011) Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Cpmposites: Part A, 42, 30–40

    Google Scholar 

  • Motakef S, El-Masri MA (1986) Simultaneous heat and mass transfer with phase change in a porous slab. Int. J. Heat Mass Transfer 29:1503–1512

    Google Scholar 

  • Mussig J (2010) Industrial applications of natural fibres-structure. Properties and Technical Applications, Wiley

    Google Scholar 

  • Neethirajan S, Gordon R, Wang L (2009) Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 27(8):461–467

    Google Scholar 

  • Oduor SO (1999) Simultaneous air, heat and moisture transfer in fibrous building insulation. Ph.D. University of Alberta, Alberta

    Google Scholar 

  • Ogniewicz Y, Tien CL (1981) Analysis of condensation in porous insulation. Int J. Heat Mass Transfer 24:421–429

    MATH  Google Scholar 

  • Olesen PO, Plackett DV Perspectives on the performance of natural plant fibres [Online]

    Google Scholar 

  • Onesippe C, Passe-Coutrin N, Toro F, Delvasto S, Bilba K, Marie-Ange A (2010) Sugar cane bagasse fibres reinforced cement composites: thermal considerations. Composites Fabrication 41A:549–556

    Google Scholar 

  • Osanyintola OF, Simonson CJ (2006) Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact, Energ Build 38(10):1270–1282

    Google Scholar 

  • Pacheco Torgal F, Jalali S (2011) Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials, 25

    Google Scholar 

  • Pacheco Torgal F, Labrincha JA (2013a) Biotech cementitious materials: some aspects of an innovative approach for concrete with enhanced durability. Constr Build Mater 40:1136–1141

    Google Scholar 

  • Pacheco Torgal F, Labrincha JA (2013b) The future of construction materials research and the seventh UN Millennium development goal: a few insights. Constr Build Mater 40:729–737

    Google Scholar 

  • Pacheco Torgal F, Miraldo S, Ding Y, Labrincha JA (2013) Targeting HPC with the help of nanoparticles: an overview. Constr Build Mater 38:365–370

    Google Scholar 

  • Pan N, Gibson P (2006) Thermal and moisture transport in fibrous materials. UK, Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  • Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energ Build 37:77–86

    Google Scholar 

  • Pasila A (2004) The dry-line method in bast fibre production. University of Helsinki, Ph.D

    Google Scholar 

  • Paster M, Pellegrino JL, Carole TM (2003) Industrial bioproducts. Today and Tomorrow, Washington DC

    Google Scholar 

  • Patel BC, Acharya SK, Mishra D (2012) Environmental effect of water absorption and flexural strength of red mud filled jute fiber/polymer composite. Int J Eng Sci Technol 4:49–59

    Google Scholar 

  • Paul V, Kanny K, Redhi GG (2013) Formulation of a novel bio-resin from banana sap. Ind Crops Prod 43:496–505

    Google Scholar 

  • Pervaiz M, Sain MM (2003) Carbon storage potential in natural fiber composites. Resour Conserv Recycl 39:325–340

    Google Scholar 

  • Pietak A, Korte S, Tan E, Downard A, Staiger MP (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253:3627–3635

    Google Scholar 

  • Rao S, Jayaraman K, Bhattacharyya D (2012) Micro and macro analysis of sisal fibre composites hollow core sandwich panels. Compos B Eng 43:2738–2745

    Google Scholar 

  • Raut SP, Ralegaonkar RV, Mandavgane SA (2011) Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Constr Build Mater 25:4037–4042

    Google Scholar 

  • Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23:22–27

    Google Scholar 

  • Roberts K (2007) Handbook of plant science, Wiley

    Google Scholar 

  • Rode C (1998) Organic insulation materials: effect on indoor humidity and necessity of a vapor barrier. Thermal performance of the exterior envelopes of buildings VII, Clear water Beach, Florida, USA 109

    Google Scholar 

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    Google Scholar 

  • Rothman DH, Zaleski S (1994) Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow. Rev. Modern Phys 66:1417–1479

    Google Scholar 

  • Roy S, Junk M, Sundar S (2006) Understanding the porosity dependence of heat flux through glass fiber insulation. Math Comput Model 43(5):485–492

    Google Scholar 

  • Rowell RM (1992) Property enhancement of wood composites, Chapter 14. In: Rowell RM, Vigo T, Kinzig B (eds) Composite applications—the role of matrix, fibre and interface. VCH Publishers, New York

    Google Scholar 

  • Rowell RM (1997) Chemical modification of agro-resources for property enhancement. Paper and Composites from Agro-based Resources

    Google Scholar 

  • Rowell RM, Stout HP (1998) Jute and Kenaf

    Google Scholar 

  • Saheb ND, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Tech 18:351–363

    Google Scholar 

  • Sathishkumar T, Navaneethakrishnan P, Shankar S, Kumar J (2012) Mechanical properties of randomly oriented snake grass fiber with banana and coir fiber-reinforced hybrid composites. J Comp Mater

    Google Scholar 

  • Satyanarayana KG, Arizaga GGC, Wypych F (2009a) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    Google Scholar 

  • Satyanarayana KG, Guimaraes JL, Wypych F (2007) Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Compos A Appl Sci Manuf 38:1694–1709

    Google Scholar 

  • Sharma HSS, Mercer PC, Brown AE (1989) A review of recent research on the retting of flax in Northern Ireland. International Biodeterioration 25:327–342

    Google Scholar 

  • Siegel R, Howell JR (1992) Thermal radiation heat transfer, Washington, Hemisphere

    Google Scholar 

  • Singh BP, Kaviany M (1992) Modeling radiative heat transfer in packed beds. Int. J. Heat Mass Trans 35:1397–1405

    Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a Review of preparation, properties and applications. Polymers 2:728–765

    Google Scholar 

  • Soubdhan T, Feuillard T, Bade F (2005) Experimental evaluation of insulation material in roofing system under tropical climate. Sol Energ 79:311–320

    Google Scholar 

  • Suddell BC (2008) Industrial fibres: recent and current developments. Proceedings of the Symposium on Natural Fibres, Rome

    Google Scholar 

  • Sukumaran K, Satyanarayana KG, Pillai SGK, Ravikumar KK (2001) Structure, physical and mechanical properties of plant fibres of Kerala. Met Mater Process 13:121–136

    Google Scholar 

  • Sumere CFV (1992) Retting of flax with special reference to enzyme retting. In: Sharma HSS, Sumere CFV (eds) The biology and processing of flax, M Publications. Belfast, UK

    Google Scholar 

  • Syerko E, Comas-Cardona S, Binetruy C (2012) Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: a review. Compos A Appl Sci Manuf 43:1365–1388

    Google Scholar 

  • Tao Y-X, Besant RW, Rezkallah KS (1991a) Modelling of frost formation in a fibrous Insulation slab and on an adjacent cold plate. Int Comm Heat Mass Trans 18:609–618

    Google Scholar 

  • Tao Y-X, Besant RW, Rezkallah KS (1991b) Unsteady heat and mass transfer with phase changes in an insulation slab: frosting effects. Int J Heat Mass Trans 34:1593–1603

    Google Scholar 

  • Thompson NS (1993) Hemicellulose as a biomass resource, Academic Press

    Google Scholar 

  • Tien C-L (1988) Thermal radiation in packed and fluidized beds. ASME J Heat Trans 110:1230–1242

    Google Scholar 

  • Turner WC, Malloy JF (1981) Thermal insulation handbook. Robert E. Krieger Publishing Co & McGraw Hill  

    Google Scholar 

  • Vafai K, Sarkar S (1986) Condensation effects in a fibrous insulation slab. J Heat Trans 108:667–675

    Google Scholar 

  • Vafai K, Whitaker S (1986) Simultaneous heat and mass transfer accompanied by phase change in porous insulation. Trans ASME 108:132–140

    Google Scholar 

  • Wallenberger FT, Weston N (2004) Natural fibers, Plastics and composites Springer

    Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 105:19–39

    Google Scholar 

  • Webb RL (1994) Principles of enhanced heat transfer. Wiley, New York

    Google Scholar 

  • Weinberger CB (1996) Synthetic fiber manufacturing, Departmant of Chemical Engineering, Drexel University

    Google Scholar 

  • Velmurugan R, Manikandan V (2007) Mechanical properties of palmyra/glass fiber hybrid composites. Compos A 38:2216–2226

    Google Scholar 

  • Verschoor JD, Greebler P, Manville NJ (1952) Heat transfer by gas conduction and radiation in fibrous insulation. J Heat Transfer 74:467–474

    Google Scholar 

  • Whitaker S (1966) The equation of motion in porous media. Chem Eng Sci 21:291–300

    Google Scholar 

  • Whitaker S (1967) Difision and dispersion in porous media. AIChE J 13:420–427

    Google Scholar 

  • Whitaker S (1969) Advances in theory of fluid motion in porous media. Lndustr Eng Chem 61:14–28

    Google Scholar 

  • Whitaker S (1973) The transport equations for multi-phase systems. Chem Eng Sci 28:139–147

    Google Scholar 

  • Whitaker S (1985) A simple geometrical derivation of the spatial averaging theorem. Chem Eng Educ 19:18–52

    Google Scholar 

  • Wijeysundera NE, Zheng BF, Iqbal M, Hauptmann EG (1996) Numerical simulation of the transient moisture transfer through porous insulation. Int J Heat Mass Trans 39:995–1004

    Google Scholar 

  • Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: Some things old, new and borrowed. Current opinion in chemical biology. 10(6):559–567

    Google Scholar 

  • Viskanta R, Menguc MP (1989) Radiative transfer in dispersed media. ASME. Appl Mech Rev 42:241–259

    Google Scholar 

  • Wu H, Fan J, Du N (2007) Thermal energy transport within porous polymer materials: effects of fiber parameters. J Appl Polym Sci 106:576–583

    Google Scholar 

  • Youngquist JA, English BE, Scharmer RC, Chow P, Shook SR (1994) Literature review on use of non-wood plant fibers for building materials and panels. United States Department of Agriculture

    Google Scholar 

  • Zhang B-M, Zhao S-Y, He X-D (2008) Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation. J Quant Spectrosc Radiat Transfer 109:1309–1324

    Google Scholar 

  • Zhao SY, Zhang BM, He XD (2009) Temperature and pressure dependent effective thermal conductivity of fibrous insulation. Int J Therm Sci 48:440–448

    Google Scholar 

  • Zhou X, Zheng F, Li H, Lu C (2010) An environment-friendly thermal insulation material from cotton stalk fibers. Energ Build 42:1070–1074

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshu Lü .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Lü, X., Lu, T., Lipponen, O., Viljanen, M. (2013). Insulation Materials Made with Vegetable Fibres. In: Pacheco Torgal, F., Mistretta, M., Kaklauskas, A., Granqvist, C., Cabeza, L. (eds) Nearly Zero Energy Building Refurbishment. Springer, London. https://doi.org/10.1007/978-1-4471-5523-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5523-2_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5522-5

  • Online ISBN: 978-1-4471-5523-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics