Abstract
Extracting, representing and comparing image content is one of the most important tasks in the fields of computer vision and pattern recognition. Distinctive image characteristics are often described by visual image features which serve as input for applications such as image registration, image retrieval, 3D reconstruction, navigation, object recognition and object tracking. The awareness for the need of adequately describing visual features emerged in the 1920s in the domain of visual perception, and fundamental concepts have been established to which almost every approach for feature extraction can be traced back. After the transfer of the basic ideas to the field of computer vision, much research has been carried out including the development of new concepts and methods for extracting such features, the improvement of existing ideas and numerous comparisons of different methods. In this chapter, a definition of visual features is derived, and different types are presented which address both the spatial and the spatio-temporal domain. This includes local image features, which are used in a variety of computer vision applications, and their evolution from early ideas to powerful feature extraction and matching methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Hakim AE, Farag AA (2006) CSIFT: a SIFT descriptor with color invariant characteristics. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 1978–1983
Agrawal M, Konolige K, Blas MR (2008) CenSurE: center surround extremas for realtime feature detection and matching. In: Forsyth D, Torr P, Zisserman A (eds) ECCV 2008, part IV. LNCS, vol 5305. Springer, Heidelberg, pp 102–115
Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput C-23(1):90–93
Al-Manasir K, Fraser CS (2006) Registration of terrestrial laser scanner data using imagery. Photogramm Rec 21(115):255–268
Alahi A, Ortiz R, Vandergheynst P (2012) FREA: fast retina keypoint. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 510–517
Ambai M, Yoshida Y (2011) CARD: compact and real-time descriptors. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 97–104
Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61(3):183–193
Bae K-H, Lichti DD (2008) A method for automated registration of unorganised point clouds. ISPRS J Photogramm Remote Sens 63(1):36–54
Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit 13(2):111–122
Barnea S, Filin S (2007) Registration of terrestrial laser scans via image based features. Int Arch Photogramm Remote Sens Spat Inf Sci 36(part 3):32–37
Barnea S, Filin S (2008) Keypoint based autonomous registration of terrestrial laser point clouds. ISPRS J Photogramm Remote Sens 63(1):19–35
Bay H, Fasel B, Van Gool L (2006) Interactive museum guide: fast and robust recognition of museum objects. In: Proceedings of the international workshop on mobile vision
Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) ECCV 2006, part I. LNCS, vol 3951. Springer, Heidelberg, pp 404–417
Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359
Beaudet PR (1978) Rotationally invariant image operators. In: Proceedings of the international joint conference on pattern recognition (ICPR), pp 579–583
Bellavia F, Tegolo D, Valenti C (2009) Improving Harris corner selection strategy. IET Comput Vis 5(2):87–96
Bendels GH, Degener P, Körtgen M, Klein R (2004) Image-based registration of 3D-range data using feature surface elements. In: Proceedings of the international symposium on virtual reality, archaeology and cultural heritage, pp 115–124
Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256
Bigün J (1990) A structure feature for some image processing applications based on spiral functions. Comput Vis Graph Image Process 51(2):166–194
Böhm J, Becker S (2007) Automatic marker-free registration of terrestrial laser scans using reflectance features. In: Proceedings of the 8th conference on optical 3D measurement techniques, pp 338–344
Bradley PE, Jutzi B (2011) Improved feature detection in fused intensity-range images with complex SIFT (\(\mathbb{C}\)SIFT). Remote Sens 3(9):2076–2088
Brenner C, Dold C, Ripperda N (2008) Coarse orientation of terrestrial laser scans in urban environments. ISPRS J Photogramm Remote Sens 63(1):4–18
Bresenham JE (1965) Algorithm for computer control of a digital plotter. IBM Syst J 4(1):25–30
Brown M, Süsstrunk S (2011) Multi-spectral SIFT for scene category recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 177–184
Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: binary robust independent elementary features. In: Daniilidis K, Maragos P, Paragios N (eds) ECCV 2010, part IV. LNCS, vol 6314. Springer, Heidelberg, pp 778–792
Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698
Chen CH, Pau LF, Wang PSP (1998) Handbook of pattern recognition and computer vision, 2nd edn. World Scientific, Singapore
Cheung W, Hamarneh G (2007) n-SIFT: n-dimensional scale invariant feature transform for matching medical images. In: Proceedings of the IEEE international symposium on biomedical imaging: from nano to macro, pp 720–723
Chum O, Matas J (2006) Geometric hashing with local affine frames. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1, pp 879–884
Collins M, Zhang J, Miller P, Wang H (2009) Full body image feature representations for gender profiling. In: Proceedings of the ICCV workshop on visual surveillance, pp 1235–1242
Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619
Dahl AL, Aanæs H, Pedersen KS (2011) Finding the best feature detector-descriptor combination. In: Proceedings of the joint conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT), pp 318–325
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1, pp 886–893
Davis LS (1973) Understanding shape: angles and sides. IEEE Trans Comput C-26(3):236–242
Deriche R, Giraudon G (1993) A computational approach for corner and vertex detection. Int J Comput Vis 10(2):101–124
Designs Act 2003 (2003) Office of Legislative Drafting and Publishing, Attorney-General’s Department, Canberra
Dick AR, Torr PHS, Cipolla R (2004) Modelling and interpretation of architecture from several images. Int J Comput Vis 60(2):111–134
Ebrahimi M, Mayol-Cuevas WW (2009) SUSurE: speeded up surround extrema feature detector and descriptor for realtime applications. In: Proceedings of the CVPR workshop on feature detectors and descriptors: the state of the art and beyond, pp 9–14
Felsberg M (2007) Optical flow estimation from monogenic phase. In: Jähne B, Barth E, Mester R, Scharr H (eds) IWCM 2004. LNCS, vol 3417. Springer, Heidelberg, pp 1–13
Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144
Feng D, Siu WC, Zhang HJ (2003) Multimedia information retrieval and management: technological fundamentals and applications. Springer, Berlin
Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395
Flint A, Dick A, Van Den Hengel A (2007) Thrift: local 3D structure recognition. In: Proceedings of the Biennial conference of the Australian pattern recognition society on digital image computing techniques and applications (DICTA), pp 182–188
Forssen P-E (2007) Maximally stable colour regions for recognition and matching. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 1–8
Forssen P-E, Lowe DG (2007) Shape descriptors for maximally stable extremal regions. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1–8
Förstner W (1994) A framework for low-level feature extraction. In: Eklundh J-O (ed) ECCV 1994, part II. LNCS, vol 801. Springer, Heidelberg, pp 383–394
Förstner W, Gülch E (1987) A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of the ISPRS conference on fast processing of photogrammetric data, pp 281–305
Förstner W, Dickscheid T, Schindler F (2009) Detecting interpretable and accurate scale-invariant keypoints. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 2256–2263
Freeman H (1969) A review of relevant problems in the processing of line-drawing data. In: Automatic interpretation and classification of images, pp 155–174
Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston
Gibson JJ (1961) Ecological optics. Vis Res 1(3–4):253–262
Grabner M, Grabner H, Bischof H (2006) Fast approximated SIFT. In: Narayanan PJ, Nayar SK, Shum H-Y (eds) ACCV 2006, part I. LNCS, vol 3851. Springer, Heidelberg, pp 918–927
Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm Remote Sens 59(3):151–174
Guo X, Cao X, Zhang J, Li X (2010) MIFT: a mirror reflection invariant feature descriptor. In: Zha H, Taniguchi R-I, Maybank S (eds) ACCV 2009, part II. LNCS, vol 5995. Springer, Heidelberg, pp 536–545
Hamming RW (1950) Error detecting and error correcting codes. Bell Syst Tech J 29(2):147–160
Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804
Haralick RM, Shapiro LG (1993) Computer and robot vision. Addison-Wesley, Reading
Harris CG, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the Alvey vision conference, pp 147–151
Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42(3):425–436
Hough PVC (1962) Method and means for recognizing complex patterns. United States Patent 3069654
Hu M-K (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187
Huang J, Kumar SR, Mitra M, Zhu W-J, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 762–768
Ihrke I, Kutulakos KN, Lensch HPA, Magnor M, Heidrich W (2008) State of the art in transparent and specular object reconstruction. In: STAR proceedings of Eurographics, pp 87–108
Isola P, Xiao J, Torralba A, Oliva A (2011) What makes an image memorable? In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 145–152
Kakumanu P, Makrogiannis S, Bourbakis N (2007) A survey of skin-color modeling and detection methods. Pattern Recognit 40(3):1106–1122
Kang Z, Li J, Zhang L, Zhao Q, Zlatanova S (2009) Automatic registration of terrestrial laser scanning point clouds using panoramic reflectance images. Sensors 9(4):2621–2646
Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 506–513
Kerr D, Coleman S, Scotney B (2008) Comparing cornerness measures for interest point detection. In: Proceedings of the international machine vision and image processing conference (IMVIP), pp 105–110
Koenderink JJ (1984) The structure of images. Biol Cybern 50(5):363–370
Koffka K (1935) Principles of gestalt psychology. Harcourt, Brace & World, New York
Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2–3):107–123
Laws KI (1980) Textured image segmentation. PhD thesis, University of Southern California, United States
Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278
Lepetit V, Fua P (2006) Keypoint recognition using randomized trees. IEEE Trans Pattern Anal Mach Intell 28(9):1465–1479
Leutenegger S, Chli M, Siegwart RY (2011) BRISK: binary robust invariant scalable keypoints. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 2548–2555
Levine MD (1969) Feature extraction: a survey. Proc IEEE 57(8):1391–1407
Liang Z, Fu H, Chi Z, Feng D (2010) Salient-SIFT for image retrieval. In: Blanc-Talon J, Bone D, Philips W, Popescu D, Scheunders P (eds) ACIVS 2010, part I. LNCS, vol 6474. Springer, Heidelberg, pp 62–71
Liang P, Li S-F, Qin J-W (2010) Multi-resolution local binary patterns for image classification. In: Proceedings of the international conference on wavelet analysis and pattern recognition (ICWAPR), pp 164–169
Lindeberg T (1994) Scale-space theory: a basic tool for analysing structures at different scales. J Appl Stat 21(2):224–270
Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):77–116
Liu C, Sharan L, Adelson EH, Rosenholtz R (2010) Exploring features in a Bayesian framework for material recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 239–246
Lo T, Siebert JP (2009) Local feature extraction and matching on range images: 2.5D SIFT. Comput Vis Image Underst 113(12):1235–1250
Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the IEEE international conference on computer vision (ICCV), vol 2, pp 1150–1157
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110
Ma Y, Soatto S, Kosecka J, Sastry SS (2005) An invitation to 3-D vision: from images to geometric models. Springer, New York
Magnusson M, Lilienthal A, Duckett T (2007) Scan registration for autonomous mining vehicles using 3D-NDT. J Field Robot 24(10):803–827
Marr D (1976) Early processing of visual information. Philos Trans R Soc Lond B, Biol Sci 275(942):483–519
Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond B, Biol Sci 207(1167):187–217
Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British machine vision conference (BMVC), vol 1, pp 384–393
Meltzer J, Soatto S (2005) Shiny correspondence: multiple-view features for non-lambertian scenes. Technical report CSD2006-004, University of California
Mikolajczyk K (2002) Detection of local features invariant to affine transformations. PhD thesis, Institut National Polytechnique de Grenoble, France
Mikolajczyk K, Schmid C (2001) Indexing based on scale invariant interest points. In: Proceedings of the IEEE international conference on computer vision (ICCV), vol 1, pp 525–531
Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) ECCV 2002, part I. LNCS, vol 2350. Springer, Heidelberg, pp 128–142
Mikolajczyk K, Schmid C (2003) A performance evaluation of local descriptors. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 257–263
Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis 60(1):63–86
Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630
Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72
Miksik O, Mikolajczyk K (2012) Evaluation of local detectors and descriptors for fast feature matching. In: Proceedings of the international conference on pattern recognition (ICPR), pp 2681–2684
Moravec HP (1977) Towards automatic visual obstacle avoidance. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), vol 2, p 584
Morel JM, Yu G (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2(2):438–469
Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 2161–2168
Nister D, Stewenius H (2008) Linear time maximally stable extremal regions. In: Forsyth D, Torr P, Zisserman A (eds) ECCV 2008, part II. LNCS, vol 5303. Springer, Heidelberg, pp 183–196
Nixon MS, Aguado AS (2008) Feature extraction & image processing, 2nd edn. Academic Press, Oxford
Noble JA (1988) Finding corners. Image Vis Comput 6(2):121–128
Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175
Pathak K, Birk A, Vaskevicius N, Poppinga J (2010) Fast registration based on noisy planes with unknown correspondences for 3-D mapping. IEEE Trans Robot 26(3):424–441
Phung SL, Bouzerdoum A, Chai D (2005) Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans Pattern Anal Mach Intell 27(1):148–154
Prewitt JMS, Mendelsohn ML (1966) The analysis of cell images. Ann NY Acad Sci 128(3):1035–1053
Rabbani T, Dijkman S, van den Heuvel F, Vosselman G (2007) An integrated approach for modelling and global registration of point clouds. ISPRS J Photogramm Remote Sens 61(6):355–370
Roberts LG (1965) Machine perception of three-dimensional solids. In: Tippett J, Berkowitz D, Clapp L, Koester C, Vanderburgh A (eds) Optical and electro-optical information processing. MIT Press, Cambridge, pp 159–197
Rosenberg B (1972) The analysis of convex blobs. Comput Graph Image Process 1(2):183–192
Rosenberg B (1974) Computing dominant points on simple shapes. Int J Man-Mach Stud 6(1):1–12
Rosenfeld A, Johnston E (1973) Angle detection on digital curves. IEEE Trans Comput 22(9):875–878
Rosten E, Drummond T (2005) Fusing points and lines for high performance tracking. In: Proceedings of the IEEE international conference on computer vision (ICCV), vol 2, pp 1508–1515
Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105–119
Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 2564–2571
Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Proceedings of the international conference on 3d digital imaging and modeling (3DIM), pp 145–152
Schmid C, Mohr R, Bauckhage C (2000) Evaluation of interest point detectors. Int J Comput Vis 37(2):151–172
Schmidt A, Kraft M, Kasinski A (2010) An evaluation of image feature detectors and descriptors for robot navigation. In: Bolc L, Tadeusiewicz R, Chmielewski LJ, Wojciechowski KW (eds) ICCVG 2010, part II. LNCS, vol 6375. Springer, Heidelberg, pp 251–259
Scovanner P, Ali S, Shah M (2007) A 3-dimensional SIFT descriptor and its application to action recognition. In: Proceedings of the international conference on multimedia, pp 357–360
Sedgewick R (1988) Algorithms, 2nd edn. Addison-Wesley, Boston
Seo JK, Sharp GC, Lee SW (2005) Range data registration using photometric features. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 1140–1145
Sheng Y, Shen L (1994) Orthogonal Fourier–Mellin moments for invariant pattern recognition. J Opt Soc Am A 11(6):1748–1757
Shi J, Tomasi T (1994) Good features to track. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 593–600
Smith SM, Brady JM (1997) SUSAN—a new approach to low level image processing. Int J Comput Vis 23(1):45–78
Sobel IE (1970) Camera models and machine perception. PhD thesis, Stanford University, United States
Steder B, Grisetti G, Burgard W (2010) Robust place recognition for 3D range data based on point features. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 1400–1405
Stricker M, Swain M (1994) The capacity of color histogram indexing. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 704–708
Stückler J, Behnke S (2011) Interest point detection in depth images through scale-space surface analysis. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3568–3574
Takaya K (2007) Feature point correspondence of stereo images by monogenic phase. In: Proceedings of the IEEE Pacific Rim conference on communications, computers and signal processing, pp 272–275
Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473
Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930
Teh C-H, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell 10(4):496–513
Tola E, Lepetit V, Fua P (2008) A fast local descriptor for dense matching. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 1–8
Tola E, Lepetit V, Fua P (2010) DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans Pattern Anal Mach Intell 32(5):815–830
Tuytelaars T, Mikolajczyk K (2007) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280
Uijlings JRR, Smeulders AWM, Scha RJH (2010) Real-time visual concept classification. IEEE Trans Multimed 12(7):665–681
Van Gool L, Dewaele P, Oosterlinck A (1985) Texture analysis anno 1983. Comput Vis Graph Image Process 29(3):336–357
Von Hansen W (2006) Robust automatic marker-free registration of terrestrial scan data. Int Arch Photogramm Remote Sens Spat Inf Sci 36(part 3):105–110
Wang Z, Brenner C (2008) Point based registration of terrestrial laser data using intensity and geometry features. Int Arch Photogramm Remote Sens Spat Inf Sci 37(part B5):583–589
Wang H, Ullah MM, Kläser A, Laptev I, Schmid C (2009) Evaluation of local spatio-temporal features for action recognition. In: Proceedings of the British machine vision conference (BMVC), pp 127–138
Wang Z, Fan B, Wu F (2011) Local intensity order pattern for feature description. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 603–610
Weinmann M, Jutzi B (2008) Fully automatic image-based registration of unorganized TLS data. Int Arch Photogramm Remote Sens Spat Inf Sci 38(part 5):55–60
Weinmann Ma, Weinmann Mi, Hinz S, Jutzi B (2011) Fast and automatic image-based registration of TLS data. ISPRS J Photogramm Remote Sens 66(6):S62–S70
Wertheimer M (1923) Laws of organization in perceptual forms. Psycologische Forschung 4:301–350
Westheimer G (1999) Gestalt theory reconfigured: Max Wertheimer’s anticipation of recent developments in visual neuroscience. Perception 28(1):5–15
Witkin AP (1983) Scale-space filtering. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 1019–1022
Wu J, Rehg JM (2011) CENTRIST: a visual descriptor for scene categorization. IEEE Trans Pattern Anal Mach Intell 33(8):1489–1501
Yang M-H, Kriegman DG, Ahuja N (2002) Detecting faces in images: a survey. IEEE Trans Pattern Anal Mach Intell 24(1):34–58
Zhang D, Lu G (2002) Generic Fourier descriptor for shape-based image retrieval. In: Proceedings of the 2002 IEEE international conference on multimedia and expo (ICME), vol 1, pp 425–428
Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recognit 37(1):1–19
Zhang J, Tan T (2002) Brief review of invariant texture analysis methods. Pattern Recognit 35(3):735–747
Zhao G, Chen L, Chen G, Yuan J (2010) KPB-SIFT: a compact local feature descriptor. In: Del Bimbo A, Chang S-F, Smeulders AWM (eds) Multimedia 2010. ACM, New York, pp 1175–1178
Zheng Z, Wang H, Teoh EK (1999) Analysis of gray level corner detection. Pattern Recognit Lett 20(2):149–162
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this chapter
Cite this chapter
Weinmann, M. (2013). Visual Features—From Early Concepts to Modern Computer Vision. In: Farinella, G., Battiato, S., Cipolla, R. (eds) Advanced Topics in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5520-1_1
Download citation
DOI: https://doi.org/10.1007/978-1-4471-5520-1_1
Publisher Name: Springer, London
Print ISBN: 978-1-4471-5519-5
Online ISBN: 978-1-4471-5520-1
eBook Packages: Computer ScienceComputer Science (R0)