Skip to main content

Visual Features—From Early Concepts to Modern Computer Vision

  • Chapter
Advanced Topics in Computer Vision

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Extracting, representing and comparing image content is one of the most important tasks in the fields of computer vision and pattern recognition. Distinctive image characteristics are often described by visual image features which serve as input for applications such as image registration, image retrieval, 3D reconstruction, navigation, object recognition and object tracking. The awareness for the need of adequately describing visual features emerged in the 1920s in the domain of visual perception, and fundamental concepts have been established to which almost every approach for feature extraction can be traced back. After the transfer of the basic ideas to the field of computer vision, much research has been carried out including the development of new concepts and methods for extracting such features, the improvement of existing ideas and numerous comparisons of different methods. In this chapter, a definition of visual features is derived, and different types are presented which address both the spatial and the spatio-temporal domain. This includes local image features, which are used in a variety of computer vision applications, and their evolution from early ideas to powerful feature extraction and matching methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Hakim AE, Farag AA (2006) CSIFT: a SIFT descriptor with color invariant characteristics. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 1978–1983

    Google Scholar 

  2. Agrawal M, Konolige K, Blas MR (2008) CenSurE: center surround extremas for realtime feature detection and matching. In: Forsyth D, Torr P, Zisserman A (eds) ECCV 2008, part IV. LNCS, vol 5305. Springer, Heidelberg, pp 102–115

    Google Scholar 

  3. Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput C-23(1):90–93

    MathSciNet  Google Scholar 

  4. Al-Manasir K, Fraser CS (2006) Registration of terrestrial laser scanner data using imagery. Photogramm Rec 21(115):255–268

    Google Scholar 

  5. Alahi A, Ortiz R, Vandergheynst P (2012) FREA: fast retina keypoint. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 510–517

    Google Scholar 

  6. Ambai M, Yoshida Y (2011) CARD: compact and real-time descriptors. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 97–104

    Google Scholar 

  7. Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61(3):183–193

    Google Scholar 

  8. Bae K-H, Lichti DD (2008) A method for automated registration of unorganised point clouds. ISPRS J Photogramm Remote Sens 63(1):36–54

    Google Scholar 

  9. Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit 13(2):111–122

    MATH  Google Scholar 

  10. Barnea S, Filin S (2007) Registration of terrestrial laser scans via image based features. Int Arch Photogramm Remote Sens Spat Inf Sci 36(part 3):32–37

    Google Scholar 

  11. Barnea S, Filin S (2008) Keypoint based autonomous registration of terrestrial laser point clouds. ISPRS J Photogramm Remote Sens 63(1):19–35

    Google Scholar 

  12. Bay H, Fasel B, Van Gool L (2006) Interactive museum guide: fast and robust recognition of museum objects. In: Proceedings of the international workshop on mobile vision

    Google Scholar 

  13. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) ECCV 2006, part I. LNCS, vol 3951. Springer, Heidelberg, pp 404–417

    Google Scholar 

  14. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Google Scholar 

  15. Beaudet PR (1978) Rotationally invariant image operators. In: Proceedings of the international joint conference on pattern recognition (ICPR), pp 579–583

    Google Scholar 

  16. Bellavia F, Tegolo D, Valenti C (2009) Improving Harris corner selection strategy. IET Comput Vis 5(2):87–96

    MathSciNet  Google Scholar 

  17. Bendels GH, Degener P, Körtgen M, Klein R (2004) Image-based registration of 3D-range data using feature surface elements. In: Proceedings of the international symposium on virtual reality, archaeology and cultural heritage, pp 115–124

    Google Scholar 

  18. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Google Scholar 

  19. Bigün J (1990) A structure feature for some image processing applications based on spiral functions. Comput Vis Graph Image Process 51(2):166–194

    Google Scholar 

  20. Böhm J, Becker S (2007) Automatic marker-free registration of terrestrial laser scans using reflectance features. In: Proceedings of the 8th conference on optical 3D measurement techniques, pp 338–344

    Google Scholar 

  21. Bradley PE, Jutzi B (2011) Improved feature detection in fused intensity-range images with complex SIFT (\(\mathbb{C}\)SIFT). Remote Sens 3(9):2076–2088

    Google Scholar 

  22. Brenner C, Dold C, Ripperda N (2008) Coarse orientation of terrestrial laser scans in urban environments. ISPRS J Photogramm Remote Sens 63(1):4–18

    Google Scholar 

  23. Bresenham JE (1965) Algorithm for computer control of a digital plotter. IBM Syst J 4(1):25–30

    Google Scholar 

  24. Brown M, Süsstrunk S (2011) Multi-spectral SIFT for scene category recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 177–184

    Google Scholar 

  25. Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: binary robust independent elementary features. In: Daniilidis K, Maragos P, Paragios N (eds) ECCV 2010, part IV. LNCS, vol 6314. Springer, Heidelberg, pp 778–792

    Google Scholar 

  26. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Google Scholar 

  27. Chen CH, Pau LF, Wang PSP (1998) Handbook of pattern recognition and computer vision, 2nd edn. World Scientific, Singapore

    Google Scholar 

  28. Cheung W, Hamarneh G (2007) n-SIFT: n-dimensional scale invariant feature transform for matching medical images. In: Proceedings of the IEEE international symposium on biomedical imaging: from nano to macro, pp 720–723

    Google Scholar 

  29. Chum O, Matas J (2006) Geometric hashing with local affine frames. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1, pp 879–884

    Google Scholar 

  30. Collins M, Zhang J, Miller P, Wang H (2009) Full body image feature representations for gender profiling. In: Proceedings of the ICCV workshop on visual surveillance, pp 1235–1242

    Google Scholar 

  31. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Google Scholar 

  32. Dahl AL, Aanæs H, Pedersen KS (2011) Finding the best feature detector-descriptor combination. In: Proceedings of the joint conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT), pp 318–325

    Google Scholar 

  33. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1, pp 886–893

    Google Scholar 

  34. Davis LS (1973) Understanding shape: angles and sides. IEEE Trans Comput C-26(3):236–242

    Google Scholar 

  35. Deriche R, Giraudon G (1993) A computational approach for corner and vertex detection. Int J Comput Vis 10(2):101–124

    Google Scholar 

  36. Designs Act 2003 (2003) Office of Legislative Drafting and Publishing, Attorney-General’s Department, Canberra

    Google Scholar 

  37. Dick AR, Torr PHS, Cipolla R (2004) Modelling and interpretation of architecture from several images. Int J Comput Vis 60(2):111–134

    Google Scholar 

  38. Ebrahimi M, Mayol-Cuevas WW (2009) SUSurE: speeded up surround extrema feature detector and descriptor for realtime applications. In: Proceedings of the CVPR workshop on feature detectors and descriptors: the state of the art and beyond, pp 9–14

    Google Scholar 

  39. Felsberg M (2007) Optical flow estimation from monogenic phase. In: Jähne B, Barth E, Mester R, Scharr H (eds) IWCM 2004. LNCS, vol 3417. Springer, Heidelberg, pp 1–13

    Google Scholar 

  40. Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144

    MathSciNet  Google Scholar 

  41. Feng D, Siu WC, Zhang HJ (2003) Multimedia information retrieval and management: technological fundamentals and applications. Springer, Berlin

    Google Scholar 

  42. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    MathSciNet  Google Scholar 

  43. Flint A, Dick A, Van Den Hengel A (2007) Thrift: local 3D structure recognition. In: Proceedings of the Biennial conference of the Australian pattern recognition society on digital image computing techniques and applications (DICTA), pp 182–188

    Google Scholar 

  44. Forssen P-E (2007) Maximally stable colour regions for recognition and matching. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 1–8

    Google Scholar 

  45. Forssen P-E, Lowe DG (2007) Shape descriptors for maximally stable extremal regions. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1–8

    Google Scholar 

  46. Förstner W (1994) A framework for low-level feature extraction. In: Eklundh J-O (ed) ECCV 1994, part II. LNCS, vol 801. Springer, Heidelberg, pp 383–394

    Google Scholar 

  47. Förstner W, Gülch E (1987) A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of the ISPRS conference on fast processing of photogrammetric data, pp 281–305

    Google Scholar 

  48. Förstner W, Dickscheid T, Schindler F (2009) Detecting interpretable and accurate scale-invariant keypoints. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 2256–2263

    Google Scholar 

  49. Freeman H (1969) A review of relevant problems in the processing of line-drawing data. In: Automatic interpretation and classification of images, pp 155–174

    Google Scholar 

  50. Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  51. Gibson JJ (1961) Ecological optics. Vis Res 1(3–4):253–262

    Google Scholar 

  52. Grabner M, Grabner H, Bischof H (2006) Fast approximated SIFT. In: Narayanan PJ, Nayar SK, Shum H-Y (eds) ACCV 2006, part I. LNCS, vol 3851. Springer, Heidelberg, pp 918–927

    Google Scholar 

  53. Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm Remote Sens 59(3):151–174

    Google Scholar 

  54. Guo X, Cao X, Zhang J, Li X (2010) MIFT: a mirror reflection invariant feature descriptor. In: Zha H, Taniguchi R-I, Maybank S (eds) ACCV 2009, part II. LNCS, vol 5995. Springer, Heidelberg, pp 536–545

    Google Scholar 

  55. Hamming RW (1950) Error detecting and error correcting codes. Bell Syst Tech J 29(2):147–160

    MathSciNet  Google Scholar 

  56. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Google Scholar 

  57. Haralick RM, Shapiro LG (1993) Computer and robot vision. Addison-Wesley, Reading

    Google Scholar 

  58. Harris CG, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the Alvey vision conference, pp 147–151

    Google Scholar 

  59. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42(3):425–436

    MATH  Google Scholar 

  60. Hough PVC (1962) Method and means for recognizing complex patterns. United States Patent 3069654

    Google Scholar 

  61. Hu M-K (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    MATH  Google Scholar 

  62. Huang J, Kumar SR, Mitra M, Zhu W-J, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 762–768

    Google Scholar 

  63. Ihrke I, Kutulakos KN, Lensch HPA, Magnor M, Heidrich W (2008) State of the art in transparent and specular object reconstruction. In: STAR proceedings of Eurographics, pp 87–108

    Google Scholar 

  64. Isola P, Xiao J, Torralba A, Oliva A (2011) What makes an image memorable? In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 145–152

    Google Scholar 

  65. Kakumanu P, Makrogiannis S, Bourbakis N (2007) A survey of skin-color modeling and detection methods. Pattern Recognit 40(3):1106–1122

    MATH  Google Scholar 

  66. Kang Z, Li J, Zhang L, Zhao Q, Zlatanova S (2009) Automatic registration of terrestrial laser scanning point clouds using panoramic reflectance images. Sensors 9(4):2621–2646

    Google Scholar 

  67. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 506–513

    Google Scholar 

  68. Kerr D, Coleman S, Scotney B (2008) Comparing cornerness measures for interest point detection. In: Proceedings of the international machine vision and image processing conference (IMVIP), pp 105–110

    Google Scholar 

  69. Koenderink JJ (1984) The structure of images. Biol Cybern 50(5):363–370

    MathSciNet  MATH  Google Scholar 

  70. Koffka K (1935) Principles of gestalt psychology. Harcourt, Brace & World, New York

    Google Scholar 

  71. Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2–3):107–123

    Google Scholar 

  72. Laws KI (1980) Textured image segmentation. PhD thesis, University of Southern California, United States

    Google Scholar 

  73. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Google Scholar 

  74. Lepetit V, Fua P (2006) Keypoint recognition using randomized trees. IEEE Trans Pattern Anal Mach Intell 28(9):1465–1479

    Google Scholar 

  75. Leutenegger S, Chli M, Siegwart RY (2011) BRISK: binary robust invariant scalable keypoints. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 2548–2555

    Google Scholar 

  76. Levine MD (1969) Feature extraction: a survey. Proc IEEE 57(8):1391–1407

    Google Scholar 

  77. Liang Z, Fu H, Chi Z, Feng D (2010) Salient-SIFT for image retrieval. In: Blanc-Talon J, Bone D, Philips W, Popescu D, Scheunders P (eds) ACIVS 2010, part I. LNCS, vol 6474. Springer, Heidelberg, pp 62–71

    Google Scholar 

  78. Liang P, Li S-F, Qin J-W (2010) Multi-resolution local binary patterns for image classification. In: Proceedings of the international conference on wavelet analysis and pattern recognition (ICWAPR), pp 164–169

    Google Scholar 

  79. Lindeberg T (1994) Scale-space theory: a basic tool for analysing structures at different scales. J Appl Stat 21(2):224–270

    Google Scholar 

  80. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):77–116

    Google Scholar 

  81. Liu C, Sharan L, Adelson EH, Rosenholtz R (2010) Exploring features in a Bayesian framework for material recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 239–246

    Google Scholar 

  82. Lo T, Siebert JP (2009) Local feature extraction and matching on range images: 2.5D SIFT. Comput Vis Image Underst 113(12):1235–1250

    Google Scholar 

  83. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the IEEE international conference on computer vision (ICCV), vol 2, pp 1150–1157

    Google Scholar 

  84. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Google Scholar 

  85. Ma Y, Soatto S, Kosecka J, Sastry SS (2005) An invitation to 3-D vision: from images to geometric models. Springer, New York

    Google Scholar 

  86. Magnusson M, Lilienthal A, Duckett T (2007) Scan registration for autonomous mining vehicles using 3D-NDT. J Field Robot 24(10):803–827

    Google Scholar 

  87. Marr D (1976) Early processing of visual information. Philos Trans R Soc Lond B, Biol Sci 275(942):483–519

    Google Scholar 

  88. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond B, Biol Sci 207(1167):187–217

    Google Scholar 

  89. Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British machine vision conference (BMVC), vol 1, pp 384–393

    Google Scholar 

  90. Meltzer J, Soatto S (2005) Shiny correspondence: multiple-view features for non-lambertian scenes. Technical report CSD2006-004, University of California

    Google Scholar 

  91. Mikolajczyk K (2002) Detection of local features invariant to affine transformations. PhD thesis, Institut National Polytechnique de Grenoble, France

    Google Scholar 

  92. Mikolajczyk K, Schmid C (2001) Indexing based on scale invariant interest points. In: Proceedings of the IEEE international conference on computer vision (ICCV), vol 1, pp 525–531

    Google Scholar 

  93. Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) ECCV 2002, part I. LNCS, vol 2350. Springer, Heidelberg, pp 128–142

    Google Scholar 

  94. Mikolajczyk K, Schmid C (2003) A performance evaluation of local descriptors. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 257–263

    Google Scholar 

  95. Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Google Scholar 

  96. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Google Scholar 

  97. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72

    Google Scholar 

  98. Miksik O, Mikolajczyk K (2012) Evaluation of local detectors and descriptors for fast feature matching. In: Proceedings of the international conference on pattern recognition (ICPR), pp 2681–2684

    Google Scholar 

  99. Moravec HP (1977) Towards automatic visual obstacle avoidance. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), vol 2, p 584

    Google Scholar 

  100. Morel JM, Yu G (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2(2):438–469

    MathSciNet  MATH  Google Scholar 

  101. Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 2161–2168

    Google Scholar 

  102. Nister D, Stewenius H (2008) Linear time maximally stable extremal regions. In: Forsyth D, Torr P, Zisserman A (eds) ECCV 2008, part II. LNCS, vol 5303. Springer, Heidelberg, pp 183–196

    Google Scholar 

  103. Nixon MS, Aguado AS (2008) Feature extraction & image processing, 2nd edn. Academic Press, Oxford

    Google Scholar 

  104. Noble JA (1988) Finding corners. Image Vis Comput 6(2):121–128

    Google Scholar 

  105. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    MATH  Google Scholar 

  106. Pathak K, Birk A, Vaskevicius N, Poppinga J (2010) Fast registration based on noisy planes with unknown correspondences for 3-D mapping. IEEE Trans Robot 26(3):424–441

    Google Scholar 

  107. Phung SL, Bouzerdoum A, Chai D (2005) Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans Pattern Anal Mach Intell 27(1):148–154

    Google Scholar 

  108. Prewitt JMS, Mendelsohn ML (1966) The analysis of cell images. Ann NY Acad Sci 128(3):1035–1053

    Google Scholar 

  109. Rabbani T, Dijkman S, van den Heuvel F, Vosselman G (2007) An integrated approach for modelling and global registration of point clouds. ISPRS J Photogramm Remote Sens 61(6):355–370

    Google Scholar 

  110. Roberts LG (1965) Machine perception of three-dimensional solids. In: Tippett J, Berkowitz D, Clapp L, Koester C, Vanderburgh A (eds) Optical and electro-optical information processing. MIT Press, Cambridge, pp 159–197

    Google Scholar 

  111. Rosenberg B (1972) The analysis of convex blobs. Comput Graph Image Process 1(2):183–192

    Google Scholar 

  112. Rosenberg B (1974) Computing dominant points on simple shapes. Int J Man-Mach Stud 6(1):1–12

    MATH  Google Scholar 

  113. Rosenfeld A, Johnston E (1973) Angle detection on digital curves. IEEE Trans Comput 22(9):875–878

    Google Scholar 

  114. Rosten E, Drummond T (2005) Fusing points and lines for high performance tracking. In: Proceedings of the IEEE international conference on computer vision (ICCV), vol 2, pp 1508–1515

    Google Scholar 

  115. Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105–119

    Google Scholar 

  116. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 2564–2571

    Google Scholar 

  117. Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Proceedings of the international conference on 3d digital imaging and modeling (3DIM), pp 145–152

    Google Scholar 

  118. Schmid C, Mohr R, Bauckhage C (2000) Evaluation of interest point detectors. Int J Comput Vis 37(2):151–172

    MATH  Google Scholar 

  119. Schmidt A, Kraft M, Kasinski A (2010) An evaluation of image feature detectors and descriptors for robot navigation. In: Bolc L, Tadeusiewicz R, Chmielewski LJ, Wojciechowski KW (eds) ICCVG 2010, part II. LNCS, vol 6375. Springer, Heidelberg, pp 251–259

    Google Scholar 

  120. Scovanner P, Ali S, Shah M (2007) A 3-dimensional SIFT descriptor and its application to action recognition. In: Proceedings of the international conference on multimedia, pp 357–360

    Google Scholar 

  121. Sedgewick R (1988) Algorithms, 2nd edn. Addison-Wesley, Boston

    Google Scholar 

  122. Seo JK, Sharp GC, Lee SW (2005) Range data registration using photometric features. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 2, pp 1140–1145

    Google Scholar 

  123. Sheng Y, Shen L (1994) Orthogonal Fourier–Mellin moments for invariant pattern recognition. J Opt Soc Am A 11(6):1748–1757

    Google Scholar 

  124. Shi J, Tomasi T (1994) Good features to track. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 593–600

    Google Scholar 

  125. Smith SM, Brady JM (1997) SUSAN—a new approach to low level image processing. Int J Comput Vis 23(1):45–78

    Google Scholar 

  126. Sobel IE (1970) Camera models and machine perception. PhD thesis, Stanford University, United States

    Google Scholar 

  127. Steder B, Grisetti G, Burgard W (2010) Robust place recognition for 3D range data based on point features. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 1400–1405

    Google Scholar 

  128. Stricker M, Swain M (1994) The capacity of color histogram indexing. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 704–708

    Google Scholar 

  129. Stückler J, Behnke S (2011) Interest point detection in depth images through scale-space surface analysis. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3568–3574

    Google Scholar 

  130. Takaya K (2007) Feature point correspondence of stereo images by monogenic phase. In: Proceedings of the IEEE Pacific Rim conference on communications, computers and signal processing, pp 272–275

    Google Scholar 

  131. Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Google Scholar 

  132. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930

    MathSciNet  Google Scholar 

  133. Teh C-H, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell 10(4):496–513

    MATH  Google Scholar 

  134. Tola E, Lepetit V, Fua P (2008) A fast local descriptor for dense matching. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 1–8

    Google Scholar 

  135. Tola E, Lepetit V, Fua P (2010) DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans Pattern Anal Mach Intell 32(5):815–830

    Google Scholar 

  136. Tuytelaars T, Mikolajczyk K (2007) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280

    Google Scholar 

  137. Uijlings JRR, Smeulders AWM, Scha RJH (2010) Real-time visual concept classification. IEEE Trans Multimed 12(7):665–681

    Google Scholar 

  138. Van Gool L, Dewaele P, Oosterlinck A (1985) Texture analysis anno 1983. Comput Vis Graph Image Process 29(3):336–357

    Google Scholar 

  139. Von Hansen W (2006) Robust automatic marker-free registration of terrestrial scan data. Int Arch Photogramm Remote Sens Spat Inf Sci 36(part 3):105–110

    Google Scholar 

  140. Wang Z, Brenner C (2008) Point based registration of terrestrial laser data using intensity and geometry features. Int Arch Photogramm Remote Sens Spat Inf Sci 37(part B5):583–589

    Google Scholar 

  141. Wang H, Ullah MM, Kläser A, Laptev I, Schmid C (2009) Evaluation of local spatio-temporal features for action recognition. In: Proceedings of the British machine vision conference (BMVC), pp 127–138

    Google Scholar 

  142. Wang Z, Fan B, Wu F (2011) Local intensity order pattern for feature description. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 603–610

    Google Scholar 

  143. Weinmann M, Jutzi B (2008) Fully automatic image-based registration of unorganized TLS data. Int Arch Photogramm Remote Sens Spat Inf Sci 38(part 5):55–60

    Google Scholar 

  144. Weinmann Ma, Weinmann Mi, Hinz S, Jutzi B (2011) Fast and automatic image-based registration of TLS data. ISPRS J Photogramm Remote Sens 66(6):S62–S70

    Google Scholar 

  145. Wertheimer M (1923) Laws of organization in perceptual forms. Psycologische Forschung 4:301–350

    Google Scholar 

  146. Westheimer G (1999) Gestalt theory reconfigured: Max Wertheimer’s anticipation of recent developments in visual neuroscience. Perception 28(1):5–15

    Google Scholar 

  147. Witkin AP (1983) Scale-space filtering. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 1019–1022

    Google Scholar 

  148. Wu J, Rehg JM (2011) CENTRIST: a visual descriptor for scene categorization. IEEE Trans Pattern Anal Mach Intell 33(8):1489–1501

    Google Scholar 

  149. Yang M-H, Kriegman DG, Ahuja N (2002) Detecting faces in images: a survey. IEEE Trans Pattern Anal Mach Intell 24(1):34–58

    Google Scholar 

  150. Zhang D, Lu G (2002) Generic Fourier descriptor for shape-based image retrieval. In: Proceedings of the 2002 IEEE international conference on multimedia and expo (ICME), vol 1, pp 425–428

    Google Scholar 

  151. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recognit 37(1):1–19

    MATH  Google Scholar 

  152. Zhang J, Tan T (2002) Brief review of invariant texture analysis methods. Pattern Recognit 35(3):735–747

    MathSciNet  MATH  Google Scholar 

  153. Zhao G, Chen L, Chen G, Yuan J (2010) KPB-SIFT: a compact local feature descriptor. In: Del Bimbo A, Chang S-F, Smeulders AWM (eds) Multimedia 2010. ACM, New York, pp 1175–1178

    Google Scholar 

  154. Zheng Z, Wang H, Teoh EK (1999) Analysis of gray level corner detection. Pattern Recognit Lett 20(2):149–162

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Weinmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Weinmann, M. (2013). Visual Features—From Early Concepts to Modern Computer Vision. In: Farinella, G., Battiato, S., Cipolla, R. (eds) Advanced Topics in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5520-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5520-1_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5519-5

  • Online ISBN: 978-1-4471-5520-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics