Skip to main content

Pharmacotherapy Considerations in Cardiovascular Disease in Women: Therapeutic Implications for Cardiovascular Disease

  • Chapter
  • First Online:
Book cover Management of Cardiovascular Disease in Women

Abstract

Cardiovascular disease (CVD) claims almost as many women’s lives as the next five diseases states in combination [1]. Furthermore, women who sustain a myocardial infarction (MI) have higher morbidity and mortality compared with men. Typically the higher risk is within the first 30 days of MI however some studies have shown the higher risk in women to be present for up to 1 year [2]. Due to the higher risk of morbidity and mortality it is imperative that clinicians treat women with effective and evidence based therapeutic regimens. Based on guidelines, patients with heart disease should be prescribed a myriad of medications from anti-hypertensives, lipid lowering medications, anticoagulants and/or anti-arrhythmics. Due to lack of therapeutic studies in special populations and or misunderstanding of the available data, women and elderly patients are less likely to receive these vital medications, even when coronary artery disease is documented or after myocardial infarction [3]. The limited therapeutic interventional studies performed in women have contributed to some of the confusion, but the studies available suggest that women benefit as much or more than men in some instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finks SW. Cardiovascular disease in women. In: Richardson MM, editor in chief. Pharmacotherapy self-assessment program. 7th ed. Lanexa: American College of Clinical Pharmacy. p. 179–201; 2010.

    Google Scholar 

  2. Bonarjee V, Rosengren A, Snapinn S, James M, Dickstein K. Sex-based short- and long-term survival in patients following complicated myocardial infarction. Eur Heart J. 2006;27(18):2177–83.

    Article  PubMed  Google Scholar 

  3. Dey S, Flather MD, Devlin G, et al. Sex-related differences in the presentation, treatment and outcomes among patients with acute coronary syndromes: the Global Registry of Acute Coronary Events. Heart. 2009;95:20–6.

    Article  PubMed  CAS  Google Scholar 

  4. Martin RM, Biswas PN, Freemantle SN, Pearce GL, Mann RD. Age and sex distribution of suspected adverse drug reactions to newly marketed drugs in general practice in England: analysis of 48 cohort studies. Br J Clin Pharmacol. 1998;46:505–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Jochmann N, Stangl K, Garbe E, Baumann G, Stangl V. Female-specific aspects in the pharmacotherapy of chronic cardiovascular diseases. Eur Heart J. 2005;26:1585–95.

    Article  PubMed  CAS  Google Scholar 

  6. Raz L, Miller VM. Considerations of sex and gender differences in preclinical and clinical trials. In: Regitz-Zagrosek V, editor. Sex and gender differences in pharmacology. Heidelberg: Springer; 2012.

    Google Scholar 

  7. Harris D, Douglas P. Enrollment of Women in Cardiovascular Clinical Trials Funded by the National Heart, Lung, and Blood Institute. N Engl J Med. 2000;343:475–80.

    Article  PubMed  CAS  Google Scholar 

  8. National Institutes of Health Web site. http://orwh.od.nih.gov/research/strategicplan/index.asp. Accessed 1 Feb 2013.

  9. Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clin Physiol Meas. 1989;10(3):187–217.

    Google Scholar 

  10. Dipiro JT, Spruill WJ, Wade WE, et al. Concepts in clinical pharmacokinetics. 5th ed. Bethesda: American Society of Health-System Pharmacists; 2010. p. 1–18.

    Google Scholar 

  11. Katzung BG. Lange’s: basic & clinical pharmacology. 8th ed. New York: McGraw-Hill; 2001. p. 35–50.

    Google Scholar 

  12. Schwartz JB. The influence of sex on pharmacokinetics. Clin Pharmacokinet. 2003;42(2):107–21.

    Article  PubMed  CAS  Google Scholar 

  13. Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed Biotechnol. 2011;1–14.

    Google Scholar 

  14. Stephen AM, Wiggins HS, Englyst HN, et al. The effect of age, sex and level of intake of dietary fibre from wheat on large-bowel function in thirty healthy subjects. Br J Nutr. 1986;56:349–61.

    Article  PubMed  CAS  Google Scholar 

  15. Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48(3):143–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Wooten JM. Pharmacotherapy considerations in elderly adults. South Med J. 2012;105(8):437–45.

    Article  PubMed  Google Scholar 

  17. Bebia Z, Buch SC, Wilson JW, et al. Bioequivalence revisited: influence of age and sex on CYP enzymes. Clin Pharmacol Ther. 2004;76(6):618–27.

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz JB. The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin Pharmacol Ther. 2007;82(1):87–95.

    Article  PubMed  CAS  Google Scholar 

  19. Ritschel WA, Kearns GL. Handbook of basic pharmacokinetics. 5th ed. Washington, D.C.: American Pharmaceutical Association; 1999. p. 3.

    Google Scholar 

  20. Werner U, Werner D, Heinbüchner S, et al. Gender is an important determinant of the disposition of the loop diuretic torasemide. J Clin Pharmacol. 2010;50(2):160–8.

    Article  PubMed  CAS  Google Scholar 

  21. Anderson GD, Carr DB. Effect of pregnancy on the pharmacokinetics of antihypertensive drugs. Clin Pharmacokinet. 2009;48(3):159–68.

    Article  PubMed  CAS  Google Scholar 

  22. Micromedex® 2.0 Web site. http://www.thomsonhc.com/micromedex2/librarian. Accessed 1 Feb 2013.

  23. Tomalik-Scharte D, Lazar A, Fuhr U, et al. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J. 2008;8:4–15.

    Article  PubMed  CAS  Google Scholar 

  24. Carrel L, Willar HF. X-inactivation profile reveals extensive variability in x-linked gene expression in females. Nature. 2005;434:400–4.

    Article  PubMed  CAS  Google Scholar 

  25. Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-intensive carboxypeptidase. J Biol Chem. 2000;275:33238–43.

    Article  PubMed  CAS  Google Scholar 

  26. Denium J, van Gool JM, Koflard MJ, ten Cate FJ. Angiotensin II type 2 receptors and cardiac hypertrophy in women with hypertrophic cardiomyopathy. Hypertension. 2001;38:1278–81.

    Article  Google Scholar 

  27. Leinwand LA. Sex is a potent modifier of the cardiovascular system. J Clin Invest. 2003;112:302–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Xin HB, Senbonmatsu T, Cheng DS, et al. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature. 2002;416:334–8.

    Article  PubMed  CAS  Google Scholar 

  29. Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos. 2013;41(2):256–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Regitz-Zagrosek V, Lehmkuhl E, Lehmkuhl HB, Hetzer R. Gender aspects in heart failure. Pathophysiology and medical therapy. Arch Mal Coeur Vaiss. 2004;97:899–908.

    PubMed  CAS  Google Scholar 

  31. Edwards DP. Regulation of signal transduction pathways by estrogen and progesterone. Annu Rev Physiol. 2005;67:335–76.

    Article  PubMed  CAS  Google Scholar 

  32. Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol. 2009;76:215–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. U.S. Food and Drug Administration Website. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Survellance/AdverseDrugEffects/default.htm. Accessed 31 Jan 2013.

  34. Moore TJ, Cohen MR, Furberg CD. Serious adverse drug events reported to the Food and Drug Administration, 1998–2005. Arch Intern Med. 2007;167(16):1752–9.

    Article  PubMed  Google Scholar 

  35. Luzier AB, Killian A, Wilton JH, Wilson MF, Forrest A, Kazierad DJ. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther. 1999;66:594–601.

    Article  PubMed  CAS  Google Scholar 

  36. Thawornkaiwong A, Preawnim S, Wattanapermpool J. Upregulation of b-1-adrenergic receptors in ovariectomized rat hearts. Life Sci. 2003;72:1813–24.

    Article  PubMed  CAS  Google Scholar 

  37. Walle T, Byinton RP, Furberg CD, McIntyre KM, Vonkonas PS. Biologic determinants of propranolol disposition: results from 1308 patients in the Beta-Blocker Heart Attack Trial. Clin Pharmacol Ther. 1985;38:509–18.

    Article  PubMed  CAS  Google Scholar 

  38. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001–7.

    Article  Google Scholar 

  39. Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106:2194–9.

    Article  Google Scholar 

  40. Tabassome S, Mary-Krause M, Funck-Brentano C, Jaillon P, on behalf of the CIBIS II Investigators. Sex differences in the prognosis of congestive heart failure: results from the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Circulation. 2001;103:375–80.

    Article  Google Scholar 

  41. Ghali JK, Pina IL, Gottlieb SS, Deedwania PC, Wikstrand JC. Metoprolol CR/XL in female patients with heart failure: analysis of the experience in metoprolol extended-release randomized intervention trial in heart failure (MERIT-HF). Circulation. 2002;105:1585–91.

    Article  PubMed  CAS  Google Scholar 

  42. The beta-Blocker Heart Attack Trial (BHAT). A randomized trial of propranolol in patients with acute myocardial infarction. JAMA. 1982;247:1707–14.

    Article  Google Scholar 

  43. Olsson G, Wikstrand J, Warnold I, Manger Cats V, McBoyle D, Herlitz J, Hialmarson A, Sonneblick EH. Metoprolol-induced reduction in postinfarction mortality: Pooled results from five double-blind randomized trials. Eur Heart J. 1992;13:28–32.

    PubMed  CAS  Google Scholar 

  44. Infarct Survival Collaborative Group. Randomised trial of intravenous atenolol amount 16,027 cases of suspected acute myocardial infarction: ISIS-1. Lancet. 1986;2(8498):57–66.

    Google Scholar 

  45. Infarct Survival Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet. 1988;2(8607):57–66.

    Google Scholar 

  46. Fischer M, Baessler A, Schunkert H. Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res. 2002;53:672–7.

    Article  PubMed  CAS  Google Scholar 

  47. Schunkert H, Danser AH, Hense HW, Derkx FH, Kurzinger S, Riegger GA. Effects of estrogen replacement therapy on the renin-angiotensin system in postmenopausal women. Circulation. 1997;95:39–45.

    Article  PubMed  CAS  Google Scholar 

  48. Regitz-Zagosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov. 2006;5:425–38.

    Article  CAS  Google Scholar 

  49. Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA. 1995;273:1450–6.

    Article  PubMed  CAS  Google Scholar 

  50. Saenz-Campos D, Bayes MC, Masana E, Martin S, Barbanoj M, Jane F. Sex-related pharmacokinetic and pharmacodynamic variations of lisinopril. Methods Find Exp Clin Pharmacol. 1996;18:533–8.

    PubMed  CAS  Google Scholar 

  51. Mackay FJ, Pearce GL, Mann RD. Cough and angiotensin II receptor antagonists: cause or confounding? Br J Clin Pharmacol. 1999;47:111–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Mas S, Gasso P, Alvarez S, Ortiz J, Sotoca JM, Francino A, Carne X, Laguente A. Pharmacogenetic predictors of angiotensin-converting enzyme inhibitor-induced cough: The role of ACE, ABO, and BDKRB2 genes. Pharmacogenet Genomics. 2011;21:531–8.

    Article  PubMed  CAS  Google Scholar 

  53. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG. Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol. 2001;281:H2337–65.

    PubMed  CAS  Google Scholar 

  54. You D, Loufrani L, Baron C, Levy BI, Widdop RE, Henrion D. High blood pressure reduction reverses angiotensin II type 2 receptor-mediated vasoconstriction into vasodilation in spontaneously hypertensive rats. Circulation. 2005;111:1006–11.

    Article  PubMed  CAS  Google Scholar 

  55. Sampson AK, Moritz KM, Jones ES, Flower RL, Widdop RE, Denton KM. Enhanced angiotensin II type 2 receptor mechanisms mediate decreases in arterial pressure attributable to chronic low-dose angiotensin II in female rats. Hypertension. 2008;52:666–71.

    Article  PubMed  CAS  Google Scholar 

  56. Nickenig G, Baumer AT, Grohe C, Kahlert S, Strehlow K, Rosenkranz S, Stablein A, Beckers F, Smits JF, Daemen MJ, et al. Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation. 1998;97:2197–201.

    Article  PubMed  CAS  Google Scholar 

  57. Gleiter CH, Mo’rike KE. Clinical pharmacokinetics of candesartan. Clin Pharmacokinet. 2002;41:7–17.

    Article  PubMed  CAS  Google Scholar 

  58. Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens. 2000;14:73–86.

    Article  Google Scholar 

  59. Vachharajani NN, Shyu WC, Smith RA, Greene DS. The effects of age and gender on the pharmacokinetics of irbesartan. Br J Clin Pharmacol. 1998;46:611–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone in morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341:709–17.

    Article  PubMed  CAS  Google Scholar 

  61. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gattlin M, Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators. Eplerenone, a selective aldosterone blocker in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  PubMed  CAS  Google Scholar 

  62. The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525–33.

    Article  Google Scholar 

  63. Rathore S, Wang Y, Krumholz H. Sex differences in the effect of digoxin for the treatment of heart failure. N Engl J Med. 2002;347(18):1403–10.

    Article  PubMed  CAS  Google Scholar 

  64. Furberg CD, Vittinghoff E, Davidson M, Herrington DM, Simon JA, Wenger NK, Hulley S. Subgroup interactions in the Heart and Estrogen/Progestin Replacement Study: lessons learned. Circulation. 2002;105:917–22.

    Article  PubMed  Google Scholar 

  65. Green HJ, Duscha BD, Sullivan MJ, Ketyian SJ, Kraus WE. Normal skeletal muscle Na(þ)-K(þ) pump concentration in patients with chronic heart failure. Muscle Nerve. 2001;24:69–76.

    Article  PubMed  CAS  Google Scholar 

  66. Rathore SS, Curtis JP, Wang Y, Bristow MR, Krumholz H. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003;289:871–8.

    Article  PubMed  CAS  Google Scholar 

  67. Kang D, Verotta D, Krecic-Shepard ME, Modi NB, Gupta SK, Schwartz JB. Population analyses of sustained-release verapamil in patients: effects of sex, race, and smoking. Clin Pharmacol Ther. 2003;73:31–40.

    Article  PubMed  CAS  Google Scholar 

  68. Krecic-Shepard ME, Barnas CR, Slimko J, Schwartz JB. Faster clearance of sustained release verapamil in men versus women: continuing observations on sex-specific differences after oral administration of verapamil. Clin Pharmacol Ther. 2000;68:286–92.

    Article  PubMed  CAS  Google Scholar 

  69. Krecic-Shepard ME, Park K, Barnas C, Slimko J, Kerwin DR, Schwartz JB. Race and sex influence clearance of nifedipine: results of a population study. Clin Pharmacol Ther. 2000;68:130–42.

    Article  PubMed  CAS  Google Scholar 

  70. Gupta SK, Atkinson L, Tu T, Longstreth JA. Age and gender related changes in stereoselective pharmacokinetics and pharmacodynamics of verapamil and norverapamil. Br J Clin Pharmacol. 1995;40:325–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Ueno K, Sato H. Sex-related differences in pharmacokinetics and pharmacodynamics of anti-hypertensive drugs. Hypertens Res. 2012;35:245–50.

    Article  PubMed  CAS  Google Scholar 

  72. Schwartz JB, Capili H, Daugherty J. Aging of women alters s-verapamil pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 1994;55:509–17.

    Article  PubMed  CAS  Google Scholar 

  73. Kloner RA, Sowers JR, DiBona GF, Gaffney M, Wein M. Sex- and age-related antihypertensive effects of amlodipine. The Amlodipine Cardiovascular Community Trial Study Group. Am J Cardiol. 1996;77:713–22.

    Article  PubMed  CAS  Google Scholar 

  74. Greenblatt DJ, Harmatz JS, von Moltke LL, Wright CE, Shader RI. Age and gender effects on the pharmacokinetics and pharmacodynamics of triazolam, a cytochrome P450 3A substrate. Clin Pharmacol Ther. 2004;76:467–79.

    Article  PubMed  CAS  Google Scholar 

  75. Ho PC, Triggs EJ, Bourne DW, Heazlewood VJ. The effect of age and sex on the disposition of acetylsalicyl acid and its metabolites. Br J Clin Pharmacol. 1985;19:675–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Miners JO, Grugrinovich N, Whitehead AG, Robson RA, Birkett DJ. Influence of gender and oral contraceptive steroids on the metabolism of salicylic acid and acetylsalicylic acid. Br J Clin Pharmacol. 1986;22:135–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Antithrombotic Trialists Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86.

    Article  Google Scholar 

  78. Ridker PM, Cook NR, Lee I-M, Gordon D, Gaziano JM, Manson JE, Hennekens CH, Buring JE. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005;352:1293–304.

    Article  PubMed  CAS  Google Scholar 

  79. Bazett HC. An analysis of the time-relations of electrocardiograms. Heart. 1920;7:353–70.

    Google Scholar 

  80. Rautaharju PM, Zhou SH, Wong S, Calhoun HP, Berenson GS, Prineas R, Davignon A. Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol. 1992;8:690–5.

    PubMed  CAS  Google Scholar 

  81. Drici MD, Clement N. Is gender a risk factor for adverse drug reactions? The example of drug-induced long QT syndrome. Drug Saf. 2001;24:575–85.

    Article  PubMed  CAS  Google Scholar 

  82. Legato M. Gender and the heart: sex-specific differences in normal anatomy and physiology. J Gend Specif Med. 2000;3:15–8.

    PubMed  CAS  Google Scholar 

  83. Gibson DM, Bron NJ, Richens A, Hounslow NJ, Sedman AJ, Whitfield LR. Effect of age and gender on pharmacokinetics of atorvastatin in humans. J Clin Pharmacol. 1996;36:242–6.

    Article  PubMed  CAS  Google Scholar 

  84. Cheng H, Rogers JD, Sweany AE, Dobrinska MR, Stein EA, Tate AC, Amin RD, Quan H. Influence of age and gender on the plasma profiles of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitory activity following multiple doses of lovastatin and simvastatin. Pharm Res. 1992;9:1629–33.

    Article  PubMed  CAS  Google Scholar 

  85. Martin PD, Dane AL, Nwose OM, Schneck DW, Warwick MJ. No effect of age or gender on the pharmacokinetics of rosuvastatin: a new HMG-CoA reductase inhibitor. J Clin Pharmacol. 2002;42:1116–21.

    Article  PubMed  CAS  Google Scholar 

  86. Cheung BMY, Lauder IJ, Lau C-P, Kumana CR. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol. 2004;57:640–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Brandoni A, Villar SR, Torres AM. Gender-related differences in the pharmacodynamics of furosemide in rats. Pharmacology. 2004;70:107–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys P. Velarde MD, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Tinsley, J., Velarde, G.P., DeLosSantos, M. (2014). Pharmacotherapy Considerations in Cardiovascular Disease in Women: Therapeutic Implications for Cardiovascular Disease. In: Mieszczanska, H., Velarde, G. (eds) Management of Cardiovascular Disease in Women. Springer, London. https://doi.org/10.1007/978-1-4471-5517-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5517-1_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5516-4

  • Online ISBN: 978-1-4471-5517-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics