Variable-Structure Control of Power Electronic Converters

  • Seddik Bacha
  • Iulian Munteanu
  • Antoneta Iuliana Bratcu
Part of the Advanced Textbooks in Control and Signal Processing book series (C&SP)


Interest in variable-structure control is justified by the necessity of robustly controlling systems whose structure switches between several configurations. Power electronic converters are such class of systems because they can be described by differential equations with discontinuous right-hand sides (i.e., discontinuous inputs). Moreover, they exhibit nonlinear behavior which can in some applications render unsuitable standard linear control approaches. Good control performance such as large bandwidth is ensured because the switching solution is obtained directly without any other form of supplementary modulation (PWM, sigma-delta modulation).


Switching Frequency Transversality Condition Switching Function Boost Converter Equivalent Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material


  1. Buhler H (1986) Sliding mode control (in French: Réglage par mode de glissement). Presses Polytechniques Romandes, LausanneGoogle Scholar
  2. Carpita M, Marchesoni M (1996) Experimental study of a power conditioning system using sliding mode control. IEEE Trans Power Electron 11(5):731–742CrossRefGoogle Scholar
  3. Carrasco JM, Quero JM, Ridao FP, Perales MA, Franquelo LG (1997) Sliding mode control of a DC/DC PWM converter with PFC implemented by neural networks. IEEE Trans Circuit Syst I Fundam Theor Appl 44(8):743–749CrossRefMATHGoogle Scholar
  4. DeBattista H, Mantz RJ, Christiansen CF (2000) Dynamical sliding mode power control of wind driven induction generators. IEEE Trans Energy Convers 15(4):728–734Google Scholar
  5. DeCarlo RA, Żak SH, Drakunov SV (2011) Variable structure, sliding mode controller design. In: Levine WS (ed) The control handbook—control system advanced methods. CRC Press, Taylor & Francis Group, Boca Raton, pp 50-1–50-22Google Scholar
  6. Emelyanov SV (1967) Variable structure control systems. Nauka, Moscow (in Russian)Google Scholar
  7. Filippov AF (1960) Differential equations with discontinuous right hand side. Am Math Soc Transl 62:199–231Google Scholar
  8. Guffon S (2000) Modelling and variable structure control for active power filters (in French: “Modélisation et commandes à structure variable de filtres actifs de puissance”). Ph.D. thesis, Grenoble Institute of Technology, FranceGoogle Scholar
  9. Guffon S, Toledo AS, Bacha S, Bornard G (1998) Indirect sliding mode control of a three-phase active power filter. In: Proceedings of the 29th annual IEEE Power Electronics Specialists Conference – PESC 1998. Kyushu Island, Japan, pp 1408–1414Google Scholar
  10. Hung JY, Gao W, Hung JC (1993) Variable structure control: a survey. IEEE Trans Ind Electron 40(1):2–22CrossRefGoogle Scholar
  11. Itkis U (1976) Control systems of variable structure. Wiley, New YorkGoogle Scholar
  12. Levant A (2007) Principles of 2-sliding mode design. Automatica 43(4):576–586MathSciNetCrossRefMATHGoogle Scholar
  13. Levant A (2010) Chattering analysis. IEEE Trans Autom Control 55(6):1380–1389MathSciNetCrossRefGoogle Scholar
  14. Malesani L, Rossetto L, Spiazzi G, Tenti P (1995) Performance optimization of Ćuk converters by sliding-mode control. IEEE Trans Power Electron 10(3):302–309CrossRefGoogle Scholar
  15. Malesani L, Rossetto L, Spiazzi G, Zuccato A (1996) An AC power supply with sliding mode control. IEEE Ind Appl Mag 2(5):32–38CrossRefGoogle Scholar
  16. Martinez-Salamero L, Calvente J, Giral R, Poveda A, Fossas E (1998) Analysis of a bidirectional coupled-inductor Ćuk converter operating in sliding mode. IEEE Trans Circuit Syst I Fundam Theor Appl 45(4):355–363CrossRefGoogle Scholar
  17. Mattavelli P, Rossetto L, Spiazzi G (1997) Small-signal analysis of DC–DC converters with sliding mode control. IEEE Trans Power Electron 12(1):96–102CrossRefGoogle Scholar
  18. Šabanovic A (2011) Variable structure systems with sliding modes in motion control—a survey. IEEE Trans Ind Inform 7(2):212–223CrossRefGoogle Scholar
  19. Šabanovic A, Fridman L, Spurgeon S (2004) Variable structure systems: from principles to implementation, IEE Control Engineering Series. The Institution of Engineering and Technology, LondonCrossRefGoogle Scholar
  20. Sira-Ramírez H (1987) Sliding motions in bilinear switched networks. IEEE Trans Circuit Syst 34(8):919–933CrossRefGoogle Scholar
  21. Sira-Ramírez H (1988) Sliding mode control on slow manifolds of DC to DC power converters. Int J Control 47(5):1323–1340CrossRefMATHGoogle Scholar
  22. Sira-Ramírez H (1993) On the dynamical sliding mode control of nonlinear systems. Int J Control 57(5):1039–1061CrossRefMATHGoogle Scholar
  23. Sira-Ramírez H (2003) On the generalized PI sliding mode control of DC-to-DC power converters: a tutorial. Int J Control 76(9/10):1018–1033CrossRefMATHGoogle Scholar
  24. Sira-Ramírez H, Silva-Ortigoza R (2006) Control design techniques in power electronics devices. Springer, LondonGoogle Scholar
  25. Slotine JJE, Sastry SS (1983) Tracking control of non-linear systems using sliding surface, with application to robot manipulators. Int J Control 38(2):465–492MathSciNetCrossRefMATHGoogle Scholar
  26. Spiazzi G, Mattavelli P, Rossetto L, Malesani L (1995) Application of sliding mode control to switch-mode power supplies. J Circuit Syst Comput 5(3):337–354CrossRefGoogle Scholar
  27. Tan S-C, Lai YM, Cheung KHM, Tse C-K (2005) On the practical design of a sliding mode voltage controlled buck converter. IEEE Trans Power Electron 20(2):425–437CrossRefGoogle Scholar
  28. Tan S-C, Lai Y-M, Tse C-K (2011) Sliding mode control of switching power converters: techniques and implementation. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  29. Utkin VA (1972) Equations of sliding mode in discontinuous systems. Autom Remote Control 2(2):211–219MathSciNetGoogle Scholar
  30. Utkin VA (1977) Variable structure systems with sliding mode. IEEE Trans Autom Control 22(2):212–222MathSciNetCrossRefMATHGoogle Scholar
  31. Utkin V (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23–36CrossRefGoogle Scholar
  32. Venkataramanan R, Šabanovic A, Ćuk S (1985) Sliding mode control of DC-to-DC converters. In: Proceedings of IEEE Industrial Electronics Conference – IECON 1985. San Francisco, California, USA, pp 251–258Google Scholar
  33. Young KD, Utkin VI, Ozguner U (1999) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol 7(3):328–342CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Seddik Bacha
    • 1
  • Iulian Munteanu
    • 2
  • Antoneta Iuliana Bratcu
    • 2
  1. 1.Grenoble Electrical Engineering LaboratorySaint Martin D’HeresFrance
  2. 2.Control Systems DepartmentGrenoble Image Speech Signal Control Systems LaboratorySaint-Martin d’HèresFrance

Personalised recommendations