Advertisement

Spacecraft-Manipulator Systems

  • Pål Johan From
  • Jan Tommy Gravdahl
  • Kristin Ytterstad Pettersen
Part of the Advances in Industrial Control book series (AIC)

Abstract

Due to the extreme costs of transporting humans to space, the use of robotic arms has been proposed as a safer and more cost-efficient solution to several tasks. Some remotely controlled robotic arms are operating in space, for example on the International Space Station, and several more will probably find their way into space in the very near future, on both space stations and satellites.

This chapter discusses the kinematics and dynamics of free-floating vehicle-manipulator systems in a free-fall environment. There are several challenges related to introducing manipulators in space that are not present in fixed-base manipulators on Earth. Firstly, there is no natural way to choose the inertial frame; because the base is floating we cannot simply choose the inertial frame to coincide with the base in the normal way. Secondly, the free-floating base complicates the kinematic modeling as the forward kinematics map is not only position dependent and non-holonomic behavior arises.

Keywords

Spacecraft Attitude Solar Sail Inertial Reference Frame Space Robot Reaction Wheel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abiko, S., & Yoshida, K. (2003). An effective control strategy of Japanese experimental module remote manipulator system (jemrms) using coupled and un-coupled dynamics. In Proceeding of the international symposium on artificial intelligence, robotics and automation in space: I-SAIRAS, NARA, Japan. Google Scholar
  2. Bryson, A. E. (1994). Control of spacecraft and aircraft. Princeton: Princeton University Press. Google Scholar
  3. Caccavale, F., & Siciliano, B. (2001). Quaternion-based kinematic control of redundant spacecraft/manipulator systems. In Proceedings of IEEE international conference on robotics and automation, Seoul, Korea. Google Scholar
  4. Dube, M., Bollea, D., Jones, W. R. Jr., Marchetti, M., & Jansen, M. J. (2003). A new synthetic hydrocarbon liquid lubricant for space applications. Tribology Letter, 15(1), 3–8. CrossRefGoogle Scholar
  5. Dubowsky, S., & Papadopoulos, E. (1993). The kinematics, dynamics and control of free-flying and free-floating space robotic systems. IEEE Transactions on Robotics and Automation, 9(5), 531–541. CrossRefGoogle Scholar
  6. From, P. J., Pettersen, K. Y., & Gravdahl, J. T. (2010). In Singularity-free dynamic equations of spacecraft-manipulator systems. International Astronautical Congress, Prague, Czech Republic. Google Scholar
  7. From, P. J., Pettersen, K. Y., & Gravdahl, J. T. (2011a). Singularity-free dynamic equations of spacecraft-manipulator systems. Acta Astronautica, 69(11–12), 1057–1065. CrossRefGoogle Scholar
  8. From, P. J., Pettersen, K. Y., & Gravdahl, J. T. (2011b). Singularity-free formulation of the dynamically equivalent manipulator mapping for space manipulators. In AIAA SPACE, Long Beach, California, USA. Google Scholar
  9. Inaba, N., & Oda, M. (2000). Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-vii. In Proceedings of IEEE international conference on robotics and automation (Vol. 2, pp. 1169–1174). Google Scholar
  10. Jekeli, C. (2000). Inertial navigation systems with geodetic applications. Walter De Gruyter Inc. Google Scholar
  11. Liang, B., Xu, Y., & Bergerman, M. (1997a). Dynamically equivalent manipulator for space manipulator system. 1. In Proceedings of IEEE international conference on robotics and automation (Vol. 4, pp. 2765–2770). CrossRefGoogle Scholar
  12. Liang, B., Xu, Y., & Bergerman, M. (1998). Mapping a space manipulator to a dynamically equivalent manipulator. ASME Journal of Dynamic Systems, Measurement, and Control, 120(1), 1–7. CrossRefGoogle Scholar
  13. Liang, B., Xu, Y., Bergerman, M., & Li, G. (1997b). Dynamically equivalent manipulator for space manipulator system. 2. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 1493–1499). Google Scholar
  14. Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., & Gravdahl, J. T. (2013). Snake robots modelling, mechatronics, and control. Berlin: Springer. CrossRefzbMATHGoogle Scholar
  15. Meirovich, L., & Kwak, M. K. (1989). State equations for a spacecraft with maneuvering flexible appendages in terms of quasi-coordinates. Applied Mechanics Reviews, 42(11), 161–170. MathSciNetCrossRefGoogle Scholar
  16. Nakamura, Y., & Mukherjee, R. (1993). Exploiting nonholonomic redundancy of free-flying space robots. IEEE Transactions on Robotics and Automation, 9(4), 499–506. CrossRefGoogle Scholar
  17. Nenchev, D., Umetani, Y., & Yoshida, K. (1992). Analysis of a redundant free-flying spacecraft/manipulator system. IEEE Transactions on Robotics and Automation, 8(1), 1–6. CrossRefGoogle Scholar
  18. Nenchev, D., Yoshida, K., Vichitkulsawat, P., & Uchiyama, M. (1999). Reaction null-space control of flexible structure mounted manipulator systems. IEEE Transactions on Robotics and Automation, 15(6), 1011–1023. CrossRefGoogle Scholar
  19. Newton, S. I. (1687). Philosophiæ Naturalis Principia Mathematica. Londini. Google Scholar
  20. Oda, M., Kibe, K., & Yamagata, F. (1996). Ets-vii, space robot in-orbit experiment satellite. In Proceedings of IEEE international conference on robotics and automation (Vol. 1, pp. 739–744). CrossRefGoogle Scholar
  21. Oriolo, G., & Nakamura, Y. (1991). Free-joint manipulators: motion control under second-order nonholonomic constraints. In Proceedings of IEEE international workshop on intelligent robots and systems, Osaka, Japan (pp. 1248–1253). CrossRefGoogle Scholar
  22. Parlaktuna, O., & Ozkan, M. (2004). Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robotics and Autonomous Systems, 46(3), 185–193. CrossRefGoogle Scholar
  23. Tatnall, A. R. L., Farrow, J. B., Bandecchi, M., & Francis, C. R. (2011). Spacecraft system engineering (4th ed.). Chichester: Wiley. Google Scholar
  24. Vafa, Z., & Dubowsky, S. (1987). On the dynamics of manipulators in space using the virtual manipulator approach. In Proceedings of IEEE international conference on robotics and automation, North Carolina (pp. 579–585). Google Scholar
  25. Yoshikawa, T., Harada, K., & Matsumoto, A. (1996). Hybrid position/force control of flexible-macro/rigid-micro manipulator systems. IEEE Transactions on Robotics and Automation, 12(4), 633–640. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Pål Johan From
    • 1
  • Jan Tommy Gravdahl
    • 2
  • Kristin Ytterstad Pettersen
    • 2
  1. 1.Department of Mathematical Sciences and TechnologyNorwegian University of Life SciencesÅsNorway
  2. 2.Department of Engineering CyberneticsNorwegian Univ. of Science & TechnologyTrondheimNorway

Personalised recommendations