Skip to main content

HA-Coated Implant: Bone Interface in Total Joint Arthroplasty

  • Chapter
  • First Online:
Bone-Implant Interface in Orthopedic Surgery

Abstract

The goal of osseointegration of orthopedic and dental implants is the rapid achievement of a mechanically stable and long lasting fixation between living bone and the implant surface. In total joint replacements of cementless designs, coatings of calcium phosphates were introduced as a means of improving the fixation of implants. Of these, hydroxyapatite (HA) is the most widely used and most extensively investigated. HA is highly osseoconductive, and the positive effect is well documented in both basic and long-term clinical research [1–6]. This chapter describes experimental and clinical studies evaluating bone-implant fixation with HA coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand. 1993;255:S1–5.

    Google Scholar 

  2. Geesink RG. Osteoconductive coatings for total joint arthroplasty. Clin Orthop. 2002;395:53–65.

    PubMed  Google Scholar 

  3. Karrholm J, Malchau H, Snorrason F, Herberts P. Micromotion of femoral stems in total hip arthroplasty. A randomized study of cemented, hydroxyapatite-coated, and porous-coated stems with roentgen stereophotogrammetric analysis. J Bone Joint Surg Am. 1994;76A:1692–705.

    Google Scholar 

  4. D’Antonio JA, Capello WN, Manley MT, Geesink R. Hydroxyapatite femoral stems for total hip arthroplasty: 10- to 13-year follow up. Clin Orthop. 2001;393:101–11.

    PubMed  Google Scholar 

  5. Havelin LI, Engesaeter LB, Espehaug B, Furnes O, Lie SA, Vollset SE. The Norwegian Arthroplasty Register: 11 years and 73,000 arthroplasties. Acta Orthop Scand. 2000;71(4):337–53.

    PubMed  CAS  Google Scholar 

  6. Cook SD, Thomas KA, Dalton JE, Volkman TK, Whitecloud III TS, Kay JF. Hydroxyapatite coating of porous implants improves bone ingrowth and interface attachment strength. J Biomed Mater Res. 1992;26(8):989–1001.

    PubMed  CAS  Google Scholar 

  7. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop. 1981;157:259–78.

    PubMed  CAS  Google Scholar 

  8. Kobayashi T, Nakamura S, Yamashita K. Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res. 2001;57(4):477–84.

    PubMed  CAS  Google Scholar 

  9. Porter AE, Taak P, Hobbs LW, Coathup MJ, Blunn GW, Spector M. Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Biomaterials. 2004;25(21):5199–208.

    PubMed  CAS  Google Scholar 

  10. Bauer TW, Geesink RC, Zimmerman R, McMahon JT. Hydroxyapatite-coated femoral stems. Histological analysis of components retrieved at autopsy. J Bone Joint Surg Am. 1991;73A:1439–52.

    Google Scholar 

  11. Coathup MJ, Blunn GW, Flynn N, Williams C, Thomas NP. A comparison of bone remodelling around hydroxyapatite-coated, porous-coated and grit-blasted hip replacements retrieved at post-mortem. J Bone Joint Surg Br. 2001;83B:118–23.

    Google Scholar 

  12. Lacefield WR, Hench LL. The bonding of bioglass to a cobalt-chromium surgical implant alloy. Biomaterials. 1986;7(2):104–8.

    PubMed  CAS  Google Scholar 

  13. Ducheyne P, Van Raemdonck W, Heughebaert JC, Heughebaert M. Structural analysis of hydroxyapatite coatings on titanium. Biomaterials. 1986;7(2):97–103.

    PubMed  CAS  Google Scholar 

  14. Hero H, Wie H, Jorgensen RB, Ruyter IE. Hydroxyapatite coatings on Ti produced by hot isostatic pressing. J Biomed Mater Res. 1994;28(3):343–8.

    PubMed  CAS  Google Scholar 

  15. Ishizawa H, Fujino M, Ogino M. Histomorphometric evaluation of the thin hydroxyapatite layer formed through anodization followed by hydrothermal treatment. J Biomed Mater Res. 1997;35(2):199–206.

    PubMed  CAS  Google Scholar 

  16. Ban S, Maruno S, Arimoto N, Harada A, Hasegawa J. Effect of electrochemically deposited apatite coating on bonding of bone to the HA-G-Ti composite and titanium. J Biomed Mater Res. 1997;36(1):9–15.

    PubMed  CAS  Google Scholar 

  17. Costa CA, Sena LA, Pinto M, Muller CA, Cavalcanti JH, Soares GA. In vivo characterization of titanium implants coated with synthetic hydroxyapatite by electrophoresis. Braz Dent J. 2005;6(1):75–81.

    Google Scholar 

  18. Schliephake H, Scharnweber D, Dard M, Robetaler S, Sewing A, Huttmann C. Biological performance of biomimetic calcium phosphate coating of titanium implants in the dog mandible. J Biomed Mater Res. 2003;64(2):225–34.

    CAS  Google Scholar 

  19. Wang H, Eliaz N, Xiang Z, Hsu HP, Spector M, Hobbs LW. Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy. Biomaterials. 2006;27(23):4192–203.

    PubMed  CAS  Google Scholar 

  20. Schmidmaier G, Wildemann B, Schwabe P, Stange R, Hoffmann J, Sudkamp NP, et al. A new electrochemically graded hydroxyapatite coating for osteosynthetic implants promotes implant osseointegration in a rat model. J Biomed Mater Res. 2002;63(2):168–72.

    PubMed  CAS  Google Scholar 

  21. Daugaard H, Elmengaard B, Bechtold JE, Soballe K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Mater Res. 2010;92A(3):913–21.

    CAS  Google Scholar 

  22. Schliephake H, Scharnweber D, Roesseler S, Dard M, Sewing A, Aref A. Biomimetic calcium phosphate composite coating of dental implants. Int J Oral Maxillofac Implants. 2006;21(5):738–46.

    PubMed  Google Scholar 

  23. Rahbek O, Overgaard S, Lind M, Bendix K, Bunger C, Soballe K. Sealing effect of hydroxyapatite coating on peri-implant migration of particles. An experimental study in dogs. J Bone Joint Surg Br. 2001;83B(3):441–7.

    Google Scholar 

  24. Shanbhag AS, Hasselman CT, Rubash HE. The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop. 1997;344:33–43.

    PubMed  Google Scholar 

  25. Bobyn JD, Jacobs JJ, Tanzer M, Urban RM, Aribindi R, Sumner DR, et al. The susceptibility of smooth implant surfaces to periimplant fibrosis and migration of polyethylene wear debris. Clin Orthop. 1995;311:21–39.

    PubMed  Google Scholar 

  26. Huracek J, Spirig P. The effect of hydroxyapatite coating on the fixation of hip prostheses. A comparison of clinical and radiographic results of hip replacement in a matched-pair study. Arch Orthop Trauma Surg. 1994;113(2):72–7.

    PubMed  CAS  Google Scholar 

  27. Rokkum M, Reigstad A, Johansson CB. HA particles can be released from well-fixed HA-coated stems: histopathology of biopsies from 20 hips 2–8 years after implantation. Acta Orthop Scand. 2002;73(3):298–306.

    PubMed  Google Scholar 

  28. Rokkum M, Brandt M, Bye K, Hetland KR, Waage S, Reigstad A. Polyethylene wear, osteolysis and acetabular loosening with an HA-coated hip prosthesis. A follow-up of 94 consecutive arthroplasties. J Bone Joint Surg Br. 1999;81B(4):582–9.

    Google Scholar 

  29. Harada Y, Wang JT, Doppalapudi VA, Willis AA, Jasty M, Harris WH, et al. Differential effects of different forms of hydroxyapatite and hydroxyapatite/tricalcium phosphate particulates on human monocyte/macrophages in vitro. J Biomed Mater Res. 1996;31(1):19–26.

    PubMed  CAS  Google Scholar 

  30. Bloebaum RD, Beeks D, Dorr LD, Savory CG, DuPont JA, Hofmann AA. Complications with hydroxyapatite particulate separation in total hip arthroplasty. Clin Orthop. 1994;298:19–26.

    PubMed  Google Scholar 

  31. Morscher EW, Hefti A, Aebi U. Severe osteolysis after third-body wear due to hydro-xyapatite particles from acetabular cup coating. J Bone Joint Surg Br. 1998;80B:267–72.

    Google Scholar 

  32. Luo ZS, Cui FZ, Li WZ. Low-temperature crystallization of calcium phosphate coatings synthesized by ion-beam-assisted deposition. J Biomed Mater Res. 1999;46(1):80–6.

    PubMed  CAS  Google Scholar 

  33. Wen HB, Wijn JR, Cui FZ, Groot GK. Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry. J Biomed Mater Res. 1998;41(2):227–36.

    PubMed  CAS  Google Scholar 

  34. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24(6):721–34.

    PubMed  CAS  Google Scholar 

  35. Barrere F, Layrolle P, Van Blitterswijk CA, De Groot K. Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J Mater Sci Mater Med. 2001;12(6):529–34.

    PubMed  CAS  Google Scholar 

  36. He F, Lin L, Zhao S, Chen S, Wang X. Fast formation of biomimetic apatite coatings on pure porous titanium implant’s surface. J Biomed Eng. 2007;24(4):806–11.

    CAS  Google Scholar 

  37. Filiaggi MJ, Pilliar RM, Coombs NA. Post-plasma-spraying heat treatment of the HA coating/Ti-6A1-4V implant system. J Biomed Mater Res. 1993;27(2):191–8.

    PubMed  CAS  Google Scholar 

  38. Lo WJ, Grant DM. Hydroxyapatite thin films deposited onto uncoated and (Ti, Al, V)N-coated Ti alloys. J Biomed Mater Res. 1999;46(3):408–17.

    PubMed  CAS  Google Scholar 

  39. Piveteau LD, Girona MI, Schlapbach L, Barboux P, Boilot JP, Gasser B. Thin films of calcium phosphate and titanium dioxide by a sol-gel route: a new method for coating medical implants. J Mater Sci Mater Med. 1999;10(3):161–7.

    PubMed  CAS  Google Scholar 

  40. Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci Mater Med. 1998;9(2):67–72.

    PubMed  CAS  Google Scholar 

  41. Zhitomirsky I, Gal-Or L. Electrophoretic deposition of hydroxyapatite. J Mater Sci Mater Med. 1997;4:213–9.

    Google Scholar 

  42. Ong JL, Lucas LC, Lacefield WR, Rigney ED. Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials. 1992;13(4):249–54.

    PubMed  CAS  Google Scholar 

  43. Paldan H, Areva S, Tirri T, Peltola T, Lindholm TC, Lassila L, et al. Soft tissue attachment on sol-gel-treated titanium implants in vivo. J Mater Sci Mater Med. 2008;19(3):1283–90.

    PubMed  CAS  Google Scholar 

  44. Sharma S, Soni VP, Bellare JR. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants. J Mater Sci Mater Med. 2009;20(7):1427–36.

    PubMed  CAS  Google Scholar 

  45. Chai CS, Ben-Nissan B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. J Mater Sci Mater Med. 1999;10(8):465–9.

    PubMed  CAS  Google Scholar 

  46. Li P, de Groot K. Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo. J Mater Sci Mater Med. 1993;27(12):1495–500.

    CAS  Google Scholar 

  47. Yang BC, Weng J, Li XD, Zhang XD. The order of calcium and phosphate ion deposition on chemically treated titanium surfaces soaked in aqueous solution. J Biomed Mater Res. 1999;47(2):213–9.

    PubMed  CAS  Google Scholar 

  48. Yang GL, He FM, Song E, Hu JA, Wang XX, Zhao SF. In vivo comparison of bone formation on titanium implant surfaces coated with biomimetically deposited calcium phosphate or electrochemically deposited hydroxyapatite. Int J Oral Maxillofac Implants. 2010;25(4):669–80.

    PubMed  Google Scholar 

  49. Li H, Khor KA, Cheang P. Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials. 2002;23(1):85–91.

    PubMed  CAS  Google Scholar 

  50. Yang Y, Ong JL. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate. J Biomed Mater Res A. 2003;64(3):509–16.

    PubMed  Google Scholar 

  51. Yonggang Y, Wolke JG, Yubao L, Jansen JA. In vitro evaluation of different heat-treated radio frequency magnetron sputtered calcium phosphate coatings. Clin Oral Implants Res. 2007;18(3):345–53.

    PubMed  Google Scholar 

  52. Meng X, Kwon TY, Kim KH. Hydroxyapatite coating by electrophoretic deposition at dynamic voltage. Dent Mater J. 2008;27(5):666–71.

    PubMed  CAS  Google Scholar 

  53. Zhao J, Xiao S, Lu X, Wang J, Weng J. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Biomed Mater. 2006;1(4):188–92.

    PubMed  CAS  Google Scholar 

  54. Manders PJ, Wolke JG, Jansen JA. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats. Clin Oral Implants Res. 2006;17(5):548–53.

    PubMed  Google Scholar 

  55. Schouten C, Meijer GJ, van den Beucken JJ, Leeuwenburgh SC, de Jonge LT, Wolke JG, et al. In vivo bone response and mechanical evaluation of electrosprayed CaP nanoparticle coatings using the iliac crest of goats as an implantation model. Acta Biomat. 2010;6(6):2227–36.

    CAS  Google Scholar 

  56. Wie H, Hero H, Solheim T. Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopy investigations. Int J Oral Maxillofac Implants. 1998;13(6):837–44.

    PubMed  CAS  Google Scholar 

  57. Yang GL, He FM, Hu JA, Wang XX, Zhao SF. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Oral Surg Med Path Rad Endod. 2009;107(6):782–9.

    Google Scholar 

  58. Yang GL, He FM, Hu JA, Wang XX, Zhao SF. Biomechanical comparison of biomimetically and electrochemically deposited hydroxyapatite-coated porous titanium implants. J Oral Maxillofac Surg. 2010;68(2):420–7.

    PubMed  Google Scholar 

  59. Hayakawa T, Takahashi K, Yoshinari M, Okada H, Yamamoto H, Sato M, et al. Trabecular bone response to titanium implants with a thin carbonate-containing apatite coating applied using the molecular precursor method. Int J Oral Maxillofac Implants. 2006;21(6):851–8.

    PubMed  Google Scholar 

  60. Huang S, Zhou K, Huang B, Li Z, Zhu S, Wang G. Preparation of an electrodeposited hydroxyapatite coating on titanium substrate suitable for in-vivo applications. J Mater Sci Mater Med. 2008;19(1):437–42.

    PubMed  CAS  Google Scholar 

  61. Dasarathy H, Riley C, Coble HD, Lacefield WR, Maybee G. HA/metal composite coatings formed by electrocodeposition. J Mater Sci Mater Med. 1996;31(1):81–9.

    CAS  Google Scholar 

  62. Lin S, LeGeros RZ, LeGeros JP. Adherent octacalciumphosphate coating on titanium alloy using modulated electrochemical deposition method. J Biomed Mater Res A. 2003;66(4):819–28.

    PubMed  Google Scholar 

  63. Zeng H, Lacefield WR, Mirov S. Structural and morphological study of pulsed laser deposited calcium phosphate bioceramic coatings: influence of deposition conditions, laser parameters, and target properties. J Biomed Mater Res. 2000;50(2):248–58.

    PubMed  CAS  Google Scholar 

  64. Barrere F, van der Valk CM, Dalmeijer RA, van Blitterswijk CA, de Groot K, Layrolle P. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J Biomed Mater Res A. 2003;64(2):378–87.

    PubMed  CAS  Google Scholar 

  65. Hayakawa T, Yoshinari M, Nemoto K, Wolke JG, Jansen JA. Effect of surface roughness and calcium phosphate coating on the implant/bone response. Clin Oral Implants Res. 2000;11(4):296–304.

    PubMed  CAS  Google Scholar 

  66. Ong JL, Bessho K, Cavin R, Carnes DL. Bone response to radio frequency sputtered calcium phosphate implants and titanium implants in vivo. J Biomed Mater Res. 2002;59(1):184–90.

    PubMed  CAS  Google Scholar 

  67. Wolke JG, van Dijk K, Schaeken HG, de Groot K, Jansen JA. Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. J Biomed Mater Res. 1994;28(12):1477–84.

    PubMed  CAS  Google Scholar 

  68. Stigter M, de Groot K, Layrolle P. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials. 2002;23(20):4143–53.

    PubMed  CAS  Google Scholar 

  69. Li P, Ducheyne P. Quasi-biological apatite film induced by titanium in a simulated body fluid. J Biomed Mater Res. 1998;41(3):341–8.

    PubMed  CAS  Google Scholar 

  70. Alzubaydi TL, Alameer SS, Ismaeel T, Alhijazi AY, Geetha M. In vivo studies of the ceramic coated titanium alloy for enhanced osseointegration in dental applications. J Mater Scie Mater Med. 2009;20(S1):35–42.

    Google Scholar 

  71. Aniket, El-Ghannam A. Electrophoretic deposition of bioactive silica-calcium phosphate nanocomposite on Ti-6Al-4V orthopedic implant. J Biomed Mater Res B. 2011;99(2):369–79.

    CAS  Google Scholar 

  72. Yan WQ, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. Bonding of chemically treated titanium implants to bone. J Biomed Mater Res. 1997;37(2):267–75.

    PubMed  CAS  Google Scholar 

  73. Reigstad O, Franke-Stenport V, Johansson CB, Wennerberg A, Rokkum M, Reigstad A. Improved bone ingrowth and fixation with a thin calcium phosphate coating intended for complete resorption. J Biomed Mater Res B. 2007;83(1):9–15.

    CAS  Google Scholar 

  74. Reigstad O, Johansson C, Stenport V, Wennerberg A, Reigstad A, Rokkum M. Different patterns of bone fixation with hydroxyapatite and resorbable CaP coatings in the rabbit tibia at 6, 12, and 52 weeks. J Biomed Mater Res B. 2011;99(1):14–20.

    Google Scholar 

  75. Becker P, Neumann HG, Nebe B, Luthen F, Rychly J. Cellular investigations on electrochemically deposited calcium phosphate composites. J Biomed Mater Res. 2004;15(4):437–40.

    CAS  Google Scholar 

  76. Ishizawa H, Fujino M, Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J Biomed Mater Res. 1995;29(11):1459–68.

    PubMed  CAS  Google Scholar 

  77. Schwarz ML, Kowarsch M, Rose S, Becker K, Lenz T, Jani L. Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model. J Biomed Mater Res A. 2009;89(3):667–78.

    PubMed  Google Scholar 

  78. He F, Yang G, Wang X, Zhao S. Effect of electrochemically deposited nanohydroxyapatite on bone bonding of sandblasted/dual acid-etched titanium implant. Int J Oral Maxillofac Implants. 2009;24(5):790–9.

    PubMed  Google Scholar 

  79. Lakstein D, Kopelovitch W, Barkay Z, Bahaa M, Hendel D, Eliaz N. Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4V implants in rabbits. Acta Biomat. 2009;5(6):2258–69.

    CAS  Google Scholar 

  80. Badr NA, El Hadary AA. Hydroxyapatite-electroplated cp-titanium implant and its bone integration potentiality: an in vivo study. Implant Dent. 2007;16(3):297–308.

    PubMed  Google Scholar 

  81. ten Broeke RH, Alves A, Baumann A, Arts JJ, Geesink RG. Bone reaction to a biomimetic third-generation hydroxyapatite coating and new surface treatment for the Symax hip stem. J Bone Joint Surg Br. 2011;93B:760–8.

    Google Scholar 

  82. ten Broeke RH, Hendrickx RP, Leffers P, Jutten LM, Geesink RG. Randomised trial comparing bone remodelling around two uncemented stems using modified Gruen zones. Hip Int. 2012;22(1):41–9.

    PubMed  Google Scholar 

  83. Boe BG, Rohrl SM, Heier T, Snorrason F, Nordsletten L. A prospective randomized study comparing electrochemically deposited hydroxyapatite and plasma-sprayed hydroxyapatite on titanium stems. Acta Orthop Scand. 2011;82(1):13–9.

    Google Scholar 

  84. Buratti CA, D’Arrigo C, Guido G, Lenzi F, Logroscino GD, Magliocchetti G, et al. Assessment of the initial stability of the Symax femoral stem with EBRA-FCA: a multicentric study of 85 cases. Hip Int. 2009;19(1):24–9.

    PubMed  Google Scholar 

  85. Bergschmidt P, Bader R, Finze S, Gankovych A, Kundt G, Mittelmeier W. Cementless total hip replacement: a prospective clinical study of the early functional and radiological outcomes of three different hip stems. Arch Orthop Trauma Surg. 2010;130(1):125–33.

    PubMed  Google Scholar 

  86. Malchiodi L, Ghensi P, Cucchi A, Trisi P, Szmukler-Moncler S, Corrocher G, et al. Early bone formation around immediately loaded FBR-coated implants after 8, 10 and 12 weeks: a human histologic evaluation of three retrieved implants. Minerva Stomatol. 2011;60(4):205–16.

    PubMed  CAS  Google Scholar 

  87. Dhert WJ. Retrieval studies on calcium phosphate-coated implants. Med Prog Technol. 1994;20(3–4):143–54.

    PubMed  CAS  Google Scholar 

  88. Porter AE, Hobbs LW, Rosen VB, Spector M. The ultrastructure of the plasma-sprayed hydroxyapatite-bone interface predisposing to bone bonding. Biomaterials. 2002;23(3):725–33.

    PubMed  CAS  Google Scholar 

  89. Nakamura S, Kobayashi T, Yamashita K. Numerical osteobonding evaluation of electrically polarized hydroxyapatite ceramics. J Biomed Mater Res A. 2004;68(1):90–4.

    PubMed  Google Scholar 

  90. Boskey AL. Current concepts of the physiology and biochemistry of calcification. Clin Orthop. 1981;157:225–57.

    PubMed  CAS  Google Scholar 

  91. Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by Electrical Polarization. Biomaterials. 2006;27(32):5572–9.

    PubMed  CAS  Google Scholar 

  92. Teng NC, Nakamura S, Takagi Y, Yamashita Y, Ohgaki M, Yamashita K. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite. J Dent Res. 2001;80(10):1925–9.

    PubMed  CAS  Google Scholar 

  93. Hamamoto N, Hamamoto Y, Nakajima T, Ozawa H. Histological, histocytochemical and ultrastructural study on the effects of surface charge on bone formation in the rabbit mandible. Arch Oral Biol. 1995;40(2):97–106.

    PubMed  CAS  Google Scholar 

  94. Wang W, Itoh S, Tanaka Y, Nagai A, Yamashita K. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization. Acta Biomat. 2009;5(8):3132–40.

    CAS  Google Scholar 

  95. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop. 2002;395:81–98.

    PubMed  Google Scholar 

  96. Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res. 2001;57(2):258–67.

    Google Scholar 

  97. Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res. 2001;58(5):570–92.

    PubMed  CAS  Google Scholar 

  98. Overgaard S, Bromose U, Lind M, Bunger C, Soballe K. The influence of crystallinity of the hydroxyapatite coating on the fixation of implants. Mechanical and histomorphometric results. J Bone Joint Surg Br. 1999;81B:725–31.

    Google Scholar 

  99. Rossler S, Sewing A, Stolzel M, Born R, Scharnweber D, Dard M, et al. Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature. J Biomed Mater Res A. 2003;64(4):655–63.

    PubMed  CAS  Google Scholar 

  100. Rossler S, Ogami T, Scharnweber D, Worch H. Biomimetic coating functionalized with adhesion peptides for dental implants. J Mater Sci Mater Med. 2001;12:871–7.

    Google Scholar 

  101. Barrere F, Layrolle P, van Blitterswijk CA, de Groot K. Biomimetic calcium phosphate coatings on Ti6AI4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3. Bone. 1999;25(S2):107–11.

    Google Scholar 

  102. Ban S, Maruno S. Hydrothermal-electrochemical deposition of hydroxyapatite. J Biomed Mater Res. 1998;42(3):387–95.

    PubMed  CAS  Google Scholar 

  103. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res. 1995;29(9):1071–9.

    PubMed  CAS  Google Scholar 

  104. Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res. 1995;29(1):65–72.

    PubMed  CAS  Google Scholar 

  105. Sewing A, Lakatos M, Scharnweber D, Roessler S, Born R, Dard M, et al. Influence of Ca/P ratio on electrochemical assisted deposition of hydroxyapatite on titanium. Key Eng Mater. 2004;4:419–22.

    Google Scholar 

  106. Kuroda K, Okido M. Hydroxyapatite coating of titanium implants using hydroprocessing and evaluation of their osteoconductivity. Bioinorg Chem Appl. 2012;2012:730693.

    PubMed  Google Scholar 

  107. Cook SD, Kay JF, Thomas KA, Jarcho M. Interface mechanics and histology of titanium and hydroxyapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Impl. 1987;2(1):15–22.

    CAS  Google Scholar 

  108. Hong L, Xu HC, de Groot K. Tensile strength of the interface between hydroxyapatite and bone. J Biomed Mater Res. 1992;26(1):7–18.

    PubMed  CAS  Google Scholar 

  109. Gross KA, Berndt CC. Thermal processing of hydroxyapatite for coating production. J Biomed Mater Res. 1998;39(4):580–7.

    PubMed  CAS  Google Scholar 

  110. Li H, Khor KA, Cheang P. Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomaterials. 2003;24(6):949–57.

    PubMed  CAS  Google Scholar 

  111. Whitehead RY, Lacefield WR, Lucas LC. Structure and integrity of a plasma sprayed hydroxyapatite coating on titanium. J Biomed Mater Res. 1993;27(12):1501–17.

    PubMed  CAS  Google Scholar 

  112. Koch B, Wolke JG, de Groot K. X-ray diffraction studies on plasma-sprayed calcium phosphate-coated implants. J Biomed Mater Res. 1990;24(6):655–67.

    PubMed  CAS  Google Scholar 

  113. Ellies LG, Nelson DG, Featherstone JD. Crystallographic changes in calcium phosphates during plasma-spraying. Biomaterials. 1992;13(5):313–6.

    PubMed  CAS  Google Scholar 

  114. Zyman Z, Weng J, Liu X, Zhang X, Ma Z. Amorphous phase and morphological structure of hydroxyapatite plasma coatings. Biomaterials. 1993;14(3):225–8.

    PubMed  CAS  Google Scholar 

  115. Wang BC, Chang E, Lee TM, Yang CY. Changes in phases and crystallinity of plasma-sprayed hydroxyapatite coatings under heat treatment: a quantitative study. J Biomed Mater Res. 1995;29(12):1483–92.

    PubMed  CAS  Google Scholar 

  116. Locardi B, Pazzaglia UE, Gabbi C, Profilo B. Thermal behaviour of hydroxyapatite intended for medical applications. Biomaterials. 1993;14(6):437–41.

    PubMed  CAS  Google Scholar 

  117. Ji H, Marquis PM. Effect of heat treatment on the microstructure of plasma-sprayed hydroxyapatite coating. Biomaterials. 1993;14(1):64–8.

    PubMed  CAS  Google Scholar 

  118. Ergun C, Doremus R, Lanford W. Hydroxyapatite and titanium: interfacial reactions. J Biomed Mater Res A. 2003;65(3):336–43.

    PubMed  Google Scholar 

  119. Wei M, Ruys AJ, Swain MV, Milthorpe BK, Sorrell CC. Hydroxyapatite-coated metals: interfacial reactions during sintering. J Mater Sci Mater Med. 2005;16(2):101–6.

    PubMed  CAS  Google Scholar 

  120. Serro AP, Fernandes AC, Saramago B, Lima J, Barbosa MA. Apatite deposition on titanium surfaces-the role of albumin adsorption. Biomaterials. 1997;18(14):963–8.

    PubMed  CAS  Google Scholar 

  121. Ban S, Maruno S, Harada A, Hattori M, Narita K, Hasegawa J. Effect of temperature on morphology of electrochemically-deposited calcium phosphates. Dent Mater J. 1996;15(1):31–8.

    PubMed  CAS  Google Scholar 

  122. Ban S, Maruno S. Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. Biomaterials. 1995;16(13):977–81.

    PubMed  CAS  Google Scholar 

  123. Ban S, Maruno S. Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. Biomaterials. 1998;19(14):1245–53.

    PubMed  CAS  Google Scholar 

  124. Shirkhanzadeh M. X-ray diffraction and fourier transform infrared analysis of nanophase apatite coatings prepared by electrocrystallization. Nanostruct Mater. 1994;4(6):677–84.

    CAS  Google Scholar 

  125. Shirkhanzadeh M, Azadegan M. Hydroxyapatite particles prepared by electrocrystallisation from aqueous electrolytes. Mater Lett. 1993;15(5–6):392–5.

    CAS  Google Scholar 

  126. Redepenning J, McIsaac JP. Electrocrystallization of brushite coatings on prosthetic alloys. Chem Mater. 1990;2(6):625–7.

    CAS  Google Scholar 

  127. Kumar M, Dasarathy H, Riley C. Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. J Biomed Mater Res. 1999;45(4):302–10.

    PubMed  CAS  Google Scholar 

  128. Kumar M, Xie J, Chittur K, Riley C. Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution. Biomaterials. 1999;20(15):1389–99.

    PubMed  CAS  Google Scholar 

  129. Agata De Sena L, Calixto De Andrade M, Malta Rossi A, de Almeida Soares G. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. J Biomed Mater Res. 2002;60(1):1–7.

    PubMed  CAS  Google Scholar 

  130. Zhitomirsky I, Gal-Or L. Electrophoretic deposition of hydroxyapatite. J Mater Sci Mater Med. 1997;8(4):213–9.

    PubMed  CAS  Google Scholar 

  131. Ducheyne P, Radin S, Heughebaert M, Heughebaert JC. Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution. Biomaterials. 1990;11(4):244–54.

    PubMed  CAS  Google Scholar 

  132. Zhang B, Kwok CT, Cheng FT, Man HC. Fabrication of nano-structured HA/CNT coatings on Ti6Al4V by electrophoretic deposition for biomedical applications. J Nanosci Nanotech. 2011;11(12):10740–5.

    CAS  Google Scholar 

  133. Redepenning J, Schlessinger T, Burnham S, Lippiello L, Miyano J. Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys. J Biomed Mater Res. 1996;30(3):287–94.

    PubMed  CAS  Google Scholar 

  134. Roessler S, Born R, Scharnweber D, Worch H, Sewing A, Dard M. Biomimetic coatings functionalized with adhesion peptides for dental implants. J Mater Sci Mater Med. 2001;12(10–12):871–7.

    PubMed  CAS  Google Scholar 

  135. Joschek S, Nies B, Krotz R, Goferich A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 2000;21(16):1645–58.

    PubMed  CAS  Google Scholar 

  136. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Pedersen CM, Bunger C. Hydroxyapatite coating enhances fixation of porous coated implants. A comparison in dogs between press fit and noninterference fit. Acta Orthop Scand. 1990;61(4):299–306.

    PubMed  CAS  Google Scholar 

  137. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Bunger C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg Br. 1993;75B:270–8.

    Google Scholar 

  138. Soballe K, Hansen ES, Rasmussen H, Jorgensen PH, Bunger C. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res. 1992;10(2):285–99.

    PubMed  CAS  Google Scholar 

  139. Soballe K, Brockstedt-Rasmussen H, Hansen ES, Bunger C. Hydroxyapatite coating modifies implant membrane formation. Controlled micromotion studied in dogs. Acta Orthop Scand. 1992;63(2):128–40.

    PubMed  CAS  Google Scholar 

  140. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Pedersen CM, Bunger C. Bone graft incorporation around titanium-alloy- and hydroxyapatite-coated implants in dogs. Clin Orthop. 1992;274:282–93.

    PubMed  Google Scholar 

  141. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Hjortdal VE, Juhl GI, Pedersen CM, et al. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop. 1991;272:300–7.

    PubMed  Google Scholar 

  142. Schimmel JW, Huiskes R. Primary fit of the Lord cementless total hip. A geometric study in cadavers. Acta Orthop Scand. 1988;59(6):638–42.

    PubMed  CAS  Google Scholar 

  143. Burke DW, O’Connor DO, Zalenski EB, Jasty M, Harris WH. Micromotion of cemented and uncemented femoral components. J Bone Joint Surg Br. 1991;73B:33–7.

    Google Scholar 

  144. Volz RG, Nisbet JK, Lee RW, McMurtry MG. The mechanical stability of various noncemented tibial components. Clin Orthop. 1988;226:38–42.

    PubMed  Google Scholar 

  145. Branson PJ, Steege JW, Wixson RL, Lewis J, Stulberg SD. Rigidity of initial fixation with uncemented tibial knee implants. J Arthroplasty. 1989;4(1):21–6.

    PubMed  CAS  Google Scholar 

  146. Bobyn JD, Engh CA. Human histology of the bone-porous metal implant interface. Orthopedics. 1984;7(9):1410–21.

    Google Scholar 

  147. Bobyn JD, Engh CA, Glassman AH. Histologic analysis of a retrieved microporous-coated femoral prosthesis. A seven-year case report. Clin Orthop. 1987;224:303–10.

    PubMed  Google Scholar 

  148. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE. Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop. 1992;274:79–96.

    PubMed  Google Scholar 

  149. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop. 1980;150:263–70.

    PubMed  Google Scholar 

  150. Harris WH, Schiller AL, Scholler JM, Freiberg RA, Scott R. Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg Am. 1976;58A:612–8.

    Google Scholar 

  151. Harris WH, White Jr RE, McCarthy JC, Walker PS, Weinberg EH. Bony ingrowth fixation of the acetabular component in canine hip joint arthroplasty. Clin Orthop. 1983;176:7–11.

    PubMed  Google Scholar 

  152. Daugaard H, Elmengaard B, Bechtold JE, Jensen TB, Soballe K. Comparison of three different hydroxyapatite coatings in an unloaded implant model. An experimental canine study. American Society of Biomechanics, 28th annual Meeting, Portland; 2004.

    Google Scholar 

  153. Kim YH, Kim JS, Joo JH, Park JW. Is hydroxyapatite coating necessary to improve survivorship of porous-coated titanium femoral stem? J Arthroplasty. 2012;27(4):559–63.

    PubMed  Google Scholar 

  154. Bercovy M, Beldame J, Lefebvre B, Duron A. A prospective clinical and radiological study comparing hydroxyapatite-coated with cemented tibial components in total knee replacement. J Bone Joint Surg Br. 2012;94B:497–503.

    Google Scholar 

  155. Schewelov T, Ahlborg H, Sanzen L, Besjakov J, Carlsson A. Fixation of the fully hydroxyapatite-coated Corail stem implanted due to femoral neck fracture. Acta Orthop Scand. 2012;83(2):153–8.

    Google Scholar 

  156. Pijls BG, Valstar ER, Kaptein BL, Fiocco M, Nelissen RG. The beneficial effect of hydroxyapatite lasts. Acta Orthop Scand. 2012;83(2):135–41.

    Google Scholar 

  157. Vidalain JP. Twenty-year results of the cementless Corail stem. Int Orthop. 2011;35(2):189–94.

    PubMed  Google Scholar 

  158. Campbell D, Mercer G, Nilsson KG, Wells V, Field JR, Callary SA. Early migration characteristics of a hydroxyapatite-coated femoral stem: an RSA study. Int Orthop. 2011;35(4):483–8.

    PubMed  Google Scholar 

  159. Voigt JD, Mosier M. Hydroxyapatite (HA) coating appears to be of benefit for implant durability of tibial components in primary total knee arthroplasty. Acta Orthop Scand. 2011;82(4):448–59.

    Google Scholar 

  160. Baker PN, McMurtry IA, Chuter G, Port A, Anderson J. THA with the ABG I prosthesis at 15 years. Excellent survival with minimal osteolysis. Clin Orthop. 2010;468:1855–61.

    PubMed  CAS  Google Scholar 

  161. Mannan K, Freeman MA, Scott G. The Freeman femoral component with hydroxyapatite coating and retention of the neck: an update with a minimum follow-up of 17 years. J Bone Joint Surg Br. 2010;92:480–5.

    PubMed  CAS  Google Scholar 

  162. Camazzola D, Hammond T, Gandhi R, Davey JR. A randomized trial of hydroxyapatite-coated femoral stems in total hip arthroplasty: a 13-year follow-up. J Arthroplasty. 2009;24(1):33–7.

    PubMed  Google Scholar 

  163. Gandhi R, Davey JR, Mahomed NN. Hydroxyapatite coated femoral stems in primary total hip arthroplasty: a meta-analysis. J Arthroplasty. 2009;24(1):38–42.

    PubMed  Google Scholar 

  164. Emans PJ, Broeke RH, Van Mulken JM, Kuijer R, Van Rhijn LW, Geesink RG. Results of total hip arthroplasties in the young patient; further evidence for a barrier against articular wear debris by hydroxyapatite coatings. Hip Int. 2009;19(4):343–51.

    PubMed  Google Scholar 

  165. Goosen JH, Kums AJ, Kollen BJ, Verheyen CC. Porous-coated femoral components with or without hydroxyapatite in primary uncemented total hip arthroplasty: a systematic review of randomized controlled trials. Arch Orthop Trauma Surg. 2009;129(9):1165–9.

    PubMed  CAS  Google Scholar 

  166. Gottliebsen M, Rahbek O, Ottosen PF, Soballe K, Stilling M. Superior 11-year survival but higher polyethylene wear of hydroxyapatite-coated Mallory-Head cups. Hip Int. 2012;22(1):35–40.

    PubMed  Google Scholar 

  167. Lazarinis S, Karrholm J, Hailer NP. Increased risk of revision of acetabular cups coated with hydroxyapatite. Acta Orthop Scand. 2010;81(1):53–9.

    Google Scholar 

  168. Stilling M, Rahbek O, Soballe K. Inferior survival of hydroxyapatite versus titanium-coated cups at 15 years. Clin Orthop. 2009;467(11):2872–9.

    PubMed  Google Scholar 

  169. Adolphson PY, Salemyr MO, Skoldenberg OG, Boden HS. Large femoral bone loss after hip revision using the uncemented proximally porous-coated Bi-Metric prosthesis: 22 hips followed for a mean of 6 years. Acta Orthop Scand. 2009;80(1):14–9.

    Google Scholar 

  170. Philippot R, Delangle F, Verdot FX, Farizon F, Fessy MH. Femoral deficiency reconstruction using a hydroxyapatite-coated locked modular stem. A series of 43 total hip revisions. Orthop Traumatol Surg Res. 2009;95(2):119–26.

    PubMed  CAS  Google Scholar 

  171. Boe B, editor. Change in bone density and implantation AV taperloc cementless hip prosthetic with two different hydroxyapatite coatings. Oslo: Nordic Orthopaedic Federation 53rd Congress, 2006.

    Google Scholar 

  172. Karrholm J, Borssen B, Lowenhielm G, Snorrason F. Does early micromotion of femoral stem prostheses matter? 4–7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br. 1994;76B:912–7.

    Google Scholar 

  173. Thien TM, Ahnfelt L, Eriksson M, Stromberg C, Karrholm J. Immediate weight bearing after uncemented total hip arthroplasty with an anteverted stem: a prospective randomized comparison using radiostereometry. Acta Orthop Scand. 2007;78(6):730–8.

    Google Scholar 

  174. Malchau H, Karrholm J, Wang YX, Herberts P. Accuracy of migration analysis in hip arthroplasty. Digitized and conventional radiography, compared to radiostereometry in 51 patients. Acta Orthop Scand. 1995;66(5):418–24.

    PubMed  CAS  Google Scholar 

  175. Nistor L, Blaha JD, Kjellstrom U, Selvik G. In vivo measurements of relative motion between an uncemented femoral total hip component and the femur by roentgen stereophotogrammetric analysis. Clin Orthop. 1991;269:220–7.

    PubMed  Google Scholar 

  176. Karrholm J, Snorrason F. Subsidence, tip, and hump micromovements of noncoated ribbed femoral prostheses. Clin Orthop. 1993;287:50–60.

    PubMed  Google Scholar 

  177. Cianci R, Baruffaldi F, Fabbri F, Affatato S, Toni A, Giunti A. A computerized system for radiographical evaluation in total hip arthroplasty. Comp Methods Programs Biomed. 1995;46(3):233–43.

    CAS  Google Scholar 

  178. Ilchmann T, Franzen H, Mjoberg B, Wingstrand H. Measurement accuracy in acetabular cup migration. A comparison of four radiologic methods versus roentgen stereophotogrammetric analysis. J Arthroplasty. 1992;7(2):121–7.

    PubMed  CAS  Google Scholar 

  179. Biedermann R, Krismer M, Stockl B, Mayrhofer P, Ornstein E, Franzen H. Accuracy of EBRA-FCA in the measurement of migration of femoral components of total hip replacement. J Bone Joint Surg Br. 1999;81B:266–72.

    Google Scholar 

  180. Krismer M, Biedermann R, Stockl B, Fischer M, Bauer R, Haid C. The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. J Bone Joint Surg Br. 1999;81B:273–80.

    Google Scholar 

  181. McCarthy CK, Steinberg GG, Agren M, Leahey D, Wyman E, Baran DT. Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg Br. 1991;73B:774–8.

    Google Scholar 

  182. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RW. Dual-energy x-ray absorptiometry measurement of bone-mineral density around porous-coated cementless femoral implants – methods and preliminary-results. J Bone Joint Surg Br. 1993;75B:279–87.

    Google Scholar 

  183. Trevisan C, Bigoni M, Cherubini R, Steiger P, Randelli G, Ortolani S. Dual x-ray absorptiometry for the evaluation of bone density from the proximal femur after total hip arthroplasty: analysis protocols and reproducibility. Calcif Tissue Int. 1993;53(3):158–61.

    PubMed  CAS  Google Scholar 

  184. Kiratli BJ, Heiner JP, McBeath AA, Wilson MA. Determination of bone mineral density by dual x-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res. 1992;10(6):836–44.

    PubMed  CAS  Google Scholar 

  185. Cohen B, Rushton N. Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J Bone Joint Surg Br. 1995;77B:479–83.

    Google Scholar 

  186. Rahmy AI, Gosens T, Blake GM, Tonino A, Fogelman I. Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteop Int. 2004;15(4):281–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Daugaard MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Daugaard, H., Bechtold, J.E., Soballe, K. (2014). HA-Coated Implant: Bone Interface in Total Joint Arthroplasty. In: Karachalios, T. (eds) Bone-Implant Interface in Orthopedic Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-5409-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5409-9_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5408-2

  • Online ISBN: 978-1-4471-5409-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics