Advertisement

Cobalt–Chrome Porous-Coated Implant-Bone Interface in Total Joint Arthroplasty

  • George C. Babis
  • Andreas F. Mavrogenis
Chapter

Abstract

Cobalt–chrome (Co–Cr) is a metal alloy of cobalt and chromium with a very high specific strength. For as long as investment casting has been available as an industrial process, cobalt-based alloys have been used in demanding applications including dental and orthopedic implants [1]. The alloy composition used in orthopedic implants, described in industry standard ASTM-F75, is composed of cobalt with (1) chromium (27–30 %) and (2) molybdenum (5–7 %) and (3) limits on other important elements such as manganese and silicon (<1 %), iron (<0.75 %), nickel (<0.5 %), and carbon, nitrogen, tungsten, phosphorus, sulfur, boron, etc. [1]. Besides cobalt–chromium–molybdenum (Co–Cr–Mo), cobalt–nickel–chromium–molybdenum (Co–Ni–Cr–Mo) is also used for implants (Table 5.1) [2, 3].

Keywords

Femoral Component Ultrahigh Molecular Weight Polyethylene Bone Ingrowth Porous Coating Orthopedic Implant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ARCAM.ASTM F75 CoCr Alloy. Arcam EB system. Available at: http://www.arcam.com/CommonResources/Files/www.arcam.com/Documents/EBM%20Materials/Arcam-ASTM-F75-Cobalt-Chrome.pdf. Accessed on March 1, 2012.
  2. 2.
    Browne M, Gregson PJ. Metal ion release from wear particles produced by Ti-6Al4V and Co-Cr alloy surfaces articulating against bone. Mater Lett. 1995;24:1–6.CrossRefGoogle Scholar
  3. 3.
    Nouri A, Hodgson PD, Wen CE. In: Biomimetic porous titanium scaffolds for orthopedic and dental applications, Mukherjee A. (Ed). Biomimetics, Learning from Nature, chapter 21, InTech Open Access Publisher, 2010:415-50Google Scholar
  4. 4.
    ASM International. Coatings. In: Davis JR, editor. Handbook of materials for medical devices. 03rd ed. Materials Park: ASM International; 2003. p. 179–95.Google Scholar
  5. 5.
    Pilliar RM. Porous biomaterials. In: Williams D, editor. Concise encyclopedia of medical & dental materials. Oxford/New York/Cambridge, MA: Pergamon Press and The MIT Press; 1990. p. 312–9.Google Scholar
  6. 6.
    Bobyn JD, Cameron HU, Abdulla D, Pilliar RM, Weatherly GC. Biologic fixation and bone modeling with an unconstrained canine total knee prosthesis. Clin Orthop. 1982;166:301–12.PubMedGoogle Scholar
  7. 7.
    Lisin M, Peterson RR. Failure of the bond between a cobalt alloy prosthetic casting and a sintered porous coating. In: Esaklul KA, editor. Handbook of case histories in failure analysis. 1st ed. Materials Park: ASM International; 1992. p. 449–51.Google Scholar
  8. 8.
    Hirvonen JK, Sartwell BD. Ion implantation. In: Surface engineering, ASM handbook. 5th ed. Materials Park: ASM International; 1994. p. 604–10.Google Scholar
  9. 9.
    Friedman RJ, Bauer TW, Garg K, Jiang M, An YH, Draughn RA. Histological and mechanical comparison of hydroxyapatite-coated cobalt-chrome and titanium implants in the rabbit femur. J Appl Biomater. 1995;6(4):231–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Jakobsen SS, Larsen A, Stoltenberg M, Bruun JM, Soballe K. Effects of as-cast and wrought cobalt-chrome-molybdenum and titanium-aluminium-vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages. Eur Cell Mater. 2007;14:45–54.PubMedGoogle Scholar
  11. 11.
    Baldwin L, Hunt JA. Host inflammatory response to NiCr, CoCr, and Ti in a soft tissue implantation model. J Biomed Mater Res A. 2006;79:574–81.PubMedGoogle Scholar
  12. 12.
    Jakobsen SS, Baas J, Jakobsen T, Soballe K. Biomechanical implant fixation of CoCrMo coating inferior to titanium coating in a canine implant model. J Biomed Mater Res A. 2010;94(1):180–6.PubMedGoogle Scholar
  13. 13.
    Firkins PJ, Tipper JL, Saadatzadeh MR, Ingham E, Stone MH, Farrar R, Fisher J. Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed Mater Eng. 2001;11:143–57.PubMedGoogle Scholar
  14. 14.
    Rieker C, Kottig P. In vivo tribological performance of 231 metal-on-metal hip articulations. Hip Int. 2002;12:73–6.Google Scholar
  15. 15.
    Pellegrini Jr VD, Hughes SS, Evarts CM. A collarless cobalt-chrome femoral component in uncemented total hip arthroplasty. Five- to eight-year follow-up. J Bone Joint Surg Br. 1992;74B:814–21.Google Scholar
  16. 16.
    Engh CA, Bobyn JD. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop. 1998;231:7–28.Google Scholar
  17. 17.
    Sotereanos NG, Engh CA, Glassman AH, Macalino GE, Engh Jr CA. Cementless femoral components should be made from cobalt chrome. Clin Orthop. 1995;313:146–53.PubMedGoogle Scholar
  18. 18.
    Engh Jr CA, Culpepper 2nd WJ, Engh CA. Long-term results of use of the anatomic medullary locking prosthesis in total hip arthroplasty. J Bone Joint Surg Am. 1997;79A:177–84.Google Scholar
  19. 19.
    Grant P, Grøgaard B, Nordsletten L. Ultralok uncemented femoral prostheses: 12 to 15 year follow-up evaluation. J Arthroplasty. 2004;19(3):274–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Mallory TH, Lombardi Jr AV, Leith JR, Fujita H, Hartman JF, Capps SG, Kefauver CA, Adams JB, Vorys GC. Minimal 10-year results of a tapered cementless femoral component in total hip arthroplasty. J Arthroplasty. 2001;16(8 S1):49–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Parvizi J, Keisu KS, Hozack WJ, Sharkey PF, Rothman RH. Primary total hip arthroplasty with an uncemented femoral component: a long-term study of the Taperloc stem. J Arthroplasty. 2004;19(2):151–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Teloken MA, Bissett G, Hozack WJ, Sharkey PF, Rothman RH. Ten to fifteen-year follow-up after total hip arthroplasty with a tapered cobalt-chromium femoral component (tri-lock) inserted without cement. J Bone Joint Surg Am. 2002;84A:2140–4.Google Scholar
  23. 23.
    Yoon TR, Rowe SM, Kim MS, Cho SG, Seon JK. Fifteen- to 20-year results of uncemented tapered fully porous-coated cobalt-chrome stems. Int Orthop. 2008;32(3):317–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Kronick JL, Barba ML, Paprosky WG. Extensively coated femoral components in young patients. Clin Orthop. 1997;344:263–74.PubMedGoogle Scholar
  25. 25.
    Engh CA, Hopper Jr RH. The odyssey of porous-coated fixation. J Arthroplasty. 2002;17(4 S1):102–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim YH. Titanium and cobalt-chrome cementless femoral stems of identical shape produce equal results. Clin Orthop. 2004;427:148–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Heath JC, Freeman MA, Swanson SA. Carcinogenic properties of wear particles from prostheses made in cobalt-chromium alloy. Lancet. 1971;1(7699):564–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Sunderman Jr FW. Metal carcinogenesis in experimental animals. Food Cosmet Toxicol. 1971;9(1):105–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Woodman JL, Black J, Jiminez SA. Isolation of serum protein organometallic corrosion products from 316LSS and HS-21 in vitro and in vivo. J Biomed Mater Res. 1984;18(1):99–114.PubMedCrossRefGoogle Scholar
  30. 30.
    Buchert PK, Vaughn BK, Mallory TH, Engh CA, Bobyn JD. Excessive metal release due to loosening and fretting of sintered particles on porous-coated hip prostheses. Report of two cases. J Bone Joint Surg Am. 1986;68A:606–9.Google Scholar
  31. 31.
    Evans EM, Freeman MA, Miller AJ, Vernon-Roberts B. Metal sensitivity as a cause of bone necrosis and loosening of the prosthesis in total joint replacement. J Bone Joint Surg Br. 1974;56B:626–42.Google Scholar
  32. 32.
    Dobbs HS, Minski MJ. Metal ion release after total hip replacement. Biomaterials. 1980;1(4):193–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Cohen J, Lindenbaum B. Fretting corrosion in orthopedic implants. Clin Orthop. 1968;61:167–75.PubMedGoogle Scholar
  34. 34.
    Placko HE, Brown SA, Payer JH. Effects of microstructure on the corrosion behavior of CoCr porous coatings on orthopedic implants. J Biomed Mater Res. 1998;39(2):292–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Hamblen DL, Paul JP. The integrity of porous coatings for cementless implants. J Bone Joint Surg Br. 1988;70B:521–3.Google Scholar
  36. 36.
    Callaghan JJ, Dysart SH, Savory CG. The uncemented porous-coated anatomic total hip prosthesis. Two-year results of a prospective consecutive series. J Bone Joint Surg Am. 1988;70A:337–46.Google Scholar
  37. 37.
    Morrey BF, Chao EY. Fracture of the porous-coated metal tray of a biologically fixed knee prosthesis. Report of a case. Clin Orthop. 1988;228:182–9.PubMedGoogle Scholar
  38. 38.
    Davey JR, Harris WH. Loosening of cobalt chrome beads from a porous-coated acetabular component. A report of ten cases. Clin Orthop. 1988;231:97–102.PubMedGoogle Scholar
  39. 39.
    Cameron HU. Six-year results with a microporous-coated metal hip prosthesis. Clin Orthop. 1986;208:81–3.PubMedGoogle Scholar
  40. 40.
    Clemow AJ, Daniell BL. Solution treatment behavior of Co-Cr-Mo alloy. J Biomed Mater Res. 1979;13(2):265–79.PubMedCrossRefGoogle Scholar
  41. 41.
    Kilner T, Pilliar RM, Weatherly GC, Allibert C. Phase identification and incipient melting in a cast Co–Cr surgical implant alloy. J Biomed Mater Res. 1982;16(1):63–79.PubMedCrossRefGoogle Scholar
  42. 42.
    Pilliar RM. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth. Clin Orthop. 1983;176:42–51.PubMedGoogle Scholar
  43. 43.
    Jacobs JJ, Latanision RM, Rose RM, Veeck SJ. The effect of porous coating processing on the corrosion behavior of cast Co-Cr-Mo surgical implant alloys. J Orthop Res. 1990;8(6):874–82.PubMedCrossRefGoogle Scholar
  44. 44.
    Georgette FS, Davidson JA. The effect of HIPing on the fatigue and tensile strength of a case, porous-coated Co-Cr-Mo alloy. J Biomed Mater Res. 1986;20(8):1229–48.PubMedCrossRefGoogle Scholar
  45. 45.
    Kohn DH, Duchyene P, Cuckler JM, et al. Fractographic analysis of failed porous and surface-coated cobalt-chromium alloy total joint replacements. Med Prog Technol. 1994;20:169.PubMedGoogle Scholar
  46. 46.
    Ranawit CS, Johanson NA, Rimnac CM, et al. Retrieval analysis of porous-coated components of total knee arthroplasty. Clin Orthop. 1986;209:244.Google Scholar
  47. 47.
    Scott RD, Ewald FC, Walker PS. Fracture of the metallic tibial tray following total knee replacement. J Bone Joint Surg Am. 1984;66A:780.Google Scholar
  48. 48.
    Flivik G, Ljung P, Rydholm U. Fracture of the tibial tray of the PCA knee. Acta Orthop Scand. 1990;61:26.PubMedCrossRefGoogle Scholar
  49. 49.
    Huang CH, Yang CY, Cheng CK. Fracture of the femoral component associated with polyethylene wear and osteolysis after total knee arthroplasty. J Arthroplasty. 1999;14:375.PubMedCrossRefGoogle Scholar
  50. 50.
    Wada M, Imura S, Bo A, et al. Stress fracture of the femoral component in total knee replacement: a report of 3 cases. Int Orthop. 1997;21:54.PubMedCrossRefGoogle Scholar
  51. 51.
    Whiteside LA, Fosco DR, Brooks JG. Fracture of the femoral component in cementless total knee arthroplasty. Clin Orthop. 1993;286:71.PubMedGoogle Scholar
  52. 52.
    Swarts E, Miller SJ, Keogh CV, Lim G, Beaver RJ. Fractured Whiteside Ortholoc II knee components. J Arthroplasty. 2001;16(7):927–34.PubMedCrossRefGoogle Scholar
  53. 53.
    Ducheyne P, De Meester P, Aernoudt E. Fatigue fractures of the femoral component of Charnley and Charnley-Muller type total hip prostheses. J Biomed Mater Res. 1975;6:199.CrossRefGoogle Scholar
  54. 54.
    Galante JO, Rostoker W, Doyle JM. Failed femoral stems in total hip prostheses. J Bone Joint Surg Am. 1975;57A:230.Google Scholar
  55. 55.
    Pilliar RM. Porous-surfaced metallic implants for orthopaedic applications. J Biomed Mater Res. 1987;21:1.PubMedCrossRefGoogle Scholar
  56. 56.
    Rostoker W, Chao EYS, Galante JO. Defects in failed stems of hip prostheses. J Biomed Mater Res. 1978;12:635.PubMedCrossRefGoogle Scholar
  57. 57.
    Cordero J, Munuera L, Folgueira MD. Influence of metal implants on infection. An experimental study in rabbits. J Bone Joint Surg Br. 1994;76B:717–20.Google Scholar
  58. 58.
    Gristina AG, Naylor PT, Myrvik QN. Mechanisms of musculoskeletal sepsis. Orthop Clin North Am. 1991;22:363–71.PubMedGoogle Scholar
  59. 59.
    Composton JE. Sex steroids and hone. Physiol Rev. 2001;81:419–77.Google Scholar
  60. 60.
    Raisz LG, Wiita B, Artis A, et al. Comparison of the effect of estrogen alone and estrogen plus androgen on biochemical markers of bone formation and resorption in postmenopausal women. J Clin Endocrinol Metab. 1996;81:3743.CrossRefGoogle Scholar
  61. 61.
    Harris WH, Davies JP. Modern use of modern cement for total hip replacement. Orthop Clin North Am. 1988;19:581–9.PubMedGoogle Scholar
  62. 62.
    Ernst M, Schmid C, Froesch ER. Enhanced osteoblastic proliferation and collagen gene expression by estradiol. Proc Natl Acad Sci U S A. 1988;85:2307–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Tobias JH, Compstom JE. Does estrogen stimulate osteoblasts function in postmenopausal women? Bone. 1999;24:121–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Edwards MW, Bain SD, Bailey MC, et al. 17 p-estradiol stimulation of endosteal bone formation in the ovariectomized mouse: an animal model for the evaluation of bone-targeted estrogens. Bone. 1992;13:29–34.PubMedCrossRefGoogle Scholar
  65. 65.
    Bord S, Beavan S, Ireland D, et al. Mechanisms by which high-dose estrogen therapy produces anabolic skeletal effects in postmenopausal women: role of locally produced growth factor. Bone. 2001;29:216–22.PubMedCrossRefGoogle Scholar
  66. 66.
    Khastgir G, Studd J, Holland N, et al. Anabolic effect of long-term estrogen replacement on hone collagen in elderly postmenopausal women with osteoporosis. Osteop Int. 2001;12:465–70.CrossRefGoogle Scholar
  67. 67.
    Shih LY, Shih HN, Chen TH. The effects of sex and estrogen therapy on bone ingrowth into porous coated implant. J Orthop Res. 2003;21(6):1033–40.PubMedCrossRefGoogle Scholar
  68. 68.
    Hirao M, Sugamoto K, Tamai N, Oka K, Yoshikawa H, Mori Y, Sasaki T. Macro-structural effect of metal surfaces treated using computer-assisted yttrium-aluminum-garnet laser scanning on bone-implant fixation. J Biomed Mater Res A. 2005;73(2):213–22.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • George C. Babis
    • 1
    • 2
  • Andreas F. Mavrogenis
    • 2
  1. 1.First Department of Orthopaedic SurgeryUniversity of Athens, Attikon University General HospitalChaidari, AtticaGreece
  2. 2.First Department of OrthopaedicsAttikon University Hospital, Athens University Medical SchoolChaidari, AtticaGreece

Personalised recommendations