Skip to main content

Modelling and Simulation of Fuel Cells

  • Chapter
  • First Online:
  • 2023 Accesses

Part of the book series: Lecture Notes in Energy ((LNEN,volume 20))

Abstract

Chap. 6 is about the electrochemical and dynamic modelling of fuel cells. The highlights of the chapter are the control-oriented modelling of fuel cells and the application of H2 norm and H norm, minimizing optimal controllers to the control and tracking of the power output of fuel cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adzakpa KP, Agbossous K, Dube Y, Dostie M, Fournier M, Poulin A (2008) PEM fuel cells modeling and analysis through current and voltage transients behaviors. IEEE Trans Energy Convers 23(2):581–591

    Article  Google Scholar 

  • Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge RR, Rodrigues A (1993) The effect of carbon monoxide contamination on anode efficiency in PEM fuel cells. Am Chem Div Fuel Chem 38:1477–1482

    Google Scholar 

  • Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge RR, Rodrigues A (1994) Parametric modeling of the performance of a 5 kW proton exchange membrane fuel cell stack. J Power Sources 49:349–356

    Article  Google Scholar 

  • Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge RR (1995) Performance modeling of the Ballard mark IV solid polymer electrolyte fuel cell: empirical model development. J Electrochem Soc 145:1–8

    Article  Google Scholar 

  • Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge RR, Rodrigues A (1996) A model predicting transient responses of proton exchange membrane fuel cells. J Power Sources 61:183–188

    Article  Google Scholar 

  • Arcak M, Görgün H, Pedersen LM, Varigonda S (2004) A nonlinear observer design for fuel cell hydrogen estimation. IEEE Trans Control Syst Technol 12:101–110

    Article  Google Scholar 

  • Badrinarayanan P, Ramaswamy S, Eggert A, Moore R (2001) Fuel cell stack water and thermal management: impact of variable system power operation. SAE Paper 2001-01-0537

    Google Scholar 

  • Bernardi D (1990) Water balance calculations for solid polymer electrolyte fuel cells. J Electrochem Soc 137(11):3344–3350

    Article  MathSciNet  Google Scholar 

  • Bove R, Ubertini S (2006) Modeling solid oxide fuel cell operation: approaches, techniques and results. J Power Sources 159(1):543–559

    Article  Google Scholar 

  • Bryson AE, Ho Y-C (1975) Applied optimal control. Hemisphere Publishing Co., New York

    Google Scholar 

  • Burl JB (1999) Linear optimal control: H2 and H methods, Addison Wesley Longman, Inc

    Google Scholar 

  • Calise F, d’Accadia MD, Palombo A, Vanoli L, Vanoli R (2004) Modelling, simulation and energy analysis of a hybrid SOFC-gas turbine system. 3rd international symposium on energy and environment, Sorrento

    Google Scholar 

  • Calise F, d’Accadia MD, Palombo A, Vanoli L (2006) Simulation and energy analysis of a SOFC-gas turbine system. Energy Int J 31(15):3278–3299

    Article  Google Scholar 

  • Calise F, d’Accadia MD, Palombo A, Vanoli L (2007) A detailed one dimensional finite-volume simulation model of a tubular SOFC and a pre-reformer. Int J Thermodyn 10(3):87–96

    Google Scholar 

  • Carnes B, Djilali N (2005) Systematic parameter estimation for PEM fuel cell models. J Power Sources 144:83–93

    Article  Google Scholar 

  • Ceraolo M, Miulli C, Pozio A (2003) Modeling static and dynamic behavior of proton exchange membrane fuel cells on the basis of electro-chemical description. J Power Sources 113:131–144

    Article  Google Scholar 

  • Chen S, Xue Z, Wang D, Xiang W (2012) An integrated system combining chemical looping hydrogen generation process and solid oxide fuel cell/gas turbine cycle for power production with CO2 capture. J Power Sources 215:89–98

    Article  Google Scholar 

  • Chia E-S (2006) A chemical reaction engineering perspective of polymer electrolyte membrane fuel cells. Dissertation, Faculty of Chemical Engineering, Princeton University

    Google Scholar 

  • Chu D, Jiang R (1999) Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks. Part I. Evaluation and simulation of an air-breathing PEMFC stack. J Power Sources 83:128–133

    Article  Google Scholar 

  • del Real AJ, Arce A, Bordons C (2007) Development and experimental validation of a PEM fuel cell dynamic model. J Power Sources 173:310–324

    Article  Google Scholar 

  • Doyle JC, Glover K, Khargonekar PP, Francis B (1989) State-space solutions to the standard H2 and H control problems. IEEE Trans Automat Contr 34:831–847

    Article  MathSciNet  MATH  Google Scholar 

  • El-Sharkh MY, Rahman A, Alam MS, Byrne PC, Sakla AA, Thomas T (2004) A dynamic model for a stand-alone PEM fuel cell power plant for residential applications. J Power Sources 138:199–204

    Article  Google Scholar 

  • Fishtik I, Callaghan CA, Datta R (2004a) Reaction route graphs. I. Theory and algorithm. J Phys Chem B 108(18):5671–5682

    Article  Google Scholar 

  • Fishtik I, Callaghan CA, Datta R (2004b) Reaction route graphs. II. Examples of enzyme- and surface-catalyzed single overall reactions. J Phys Chem B 108(18):5683–5697

    Article  Google Scholar 

  • Fishtik I, Callaghan CA, Datta R (2004c) Reaction route graphs. III. Non-minimal kinetic mechanisms. J Phys Chem B 109(7):2710–2722

    Article  Google Scholar 

  • Fontes G, Turpin C, Astier S (2010) A large signal dynamic circuit model of a H2/O2 PEM fuel cell. IEEE Trans Ind Electron 57(6):1874–1881

    Article  Google Scholar 

  • Fronk M, Wetter D, Masten D, Bosco A (2000) PEM fuel cell system solutions for transportation. SAE paper 2000-01-0373

    Google Scholar 

  • Gahinet P, Apkarian P (1994) A linear matrix inequality approach to H control. Int J Robust Nonlinear Control 4:421–448

    Article  MathSciNet  MATH  Google Scholar 

  • Garnier S, Pera M-C, Hissel D, De Bernardinis A, Kauffmann J-M, Coquery G (2004) Dynamic behavior of a proton exchange membrane fuel cell under transportation cycle load. Proceeding of international symposium on industrial elect 1, pp 329–333

    Google Scholar 

  • Glover K, Doyle JC (1988) State space formulae for all stabilizing controllers that satisfy an H -norm bound and relations to risk sensitivity. Syst Control Lett 11:167–172

    Article  MathSciNet  MATH  Google Scholar 

  • Görgün H, Arcak M, Barbir F (2006) An algorithm for estimation of membrane water content in PEM fuel cells. J Power Sources 157:389–394

    Article  Google Scholar 

  • Grasser F (2005) An analytical, control-oriented state-space model for a PEM fuel cell system, Ph.D. Dissertation, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Google Scholar 

  • Grasser F, Rufer A (2007) A fully analytical PEM fuel cell system model for control applications. IEEE Trans Ind Appl 43(6):1499–1506

    Article  Google Scholar 

  • Haschka M, Weickert T, Krebs V (2006) Application of a sigma-point Kalman-filter for the online estimation of fractional order impedance m Fractional Differentiation and its Applications. Proceeding of the second IFAC workshop on fractional differentiation and its applications 2(1):194:199

    Google Scholar 

  • Hinaje M, Nguyen D, Rael S, Davat B (2008) Modelling of the proton exchange membrane fuel cell in steady state. Proceeding of IEEE power electronics specialists conference 3550–3556

    Google Scholar 

  • Ingimundarson A, Stefanopoulou A, McKay DA (2008) Model-based detection of hydrogen leaks in a fuel cell stack. IEEE Trans Control Syst Technol 16(5):1004–1012

    Article  Google Scholar 

  • Janardhanan VM, Deutschmann O (2006) CFD analysis of a solid oxide fuel cell with internal reforming: coupled interactions of transport, heterogeneous catalysis and electrochemical processes. J Power Sources 162:1192–1202

    Article  Google Scholar 

  • Ju H, Meng H, Wang C (2005) A single phase, non isothermal model for PEM fuel cells. Int J Heat Mass Transfer 48:1303–1315

    Article  MATH  Google Scholar 

  • Julier SJ (2002) The scaled unscented transformation. Proceeding of the American control conference, vol 6, pp 4555–4559

    Google Scholar 

  • Julier SJ, Uhlmann J (2000) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–422

    Article  MathSciNet  Google Scholar 

  • Julier SJ, Uhlmann J, Durrant-Whyte HF (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Auto Cont 45(3):477–482

    Article  MathSciNet  MATH  Google Scholar 

  • Kalhammer F, Prokopius P, Roan V, Voecks G (1998) Status and prospects of fuel cells as automotive engines. State of California Air Resources Board, Ca., USA

    Google Scholar 

  • Kandepu R, Imsland L, Foss BA, Stiller C, Thorud B, Bolland O (2005) Control-relevant SOFC modeling and model evaluation. Proceedings of ECOS 5

    Google Scholar 

  • Kandepu R, Foss BA, Imsland L (2006) Integrated modeling and control of a load-connected SOFC-GT autonomous power system. Proceeding of the American control conference 6:5

    Google Scholar 

  • Kandepu R, Imsland L, Stiller C, Foss BA, Kariwala V (2006b) Control-relevant modeling and simulation of a SOFC-GT hybrid system. Model Ident Control 27(3):143–156

    Article  Google Scholar 

  • Kandepu R, Huang B, Imsland L, Foss BA (2007) Comparative study of state estimation of fuel cell hybrid system using UKF and EKF. IEEE international conference on control and automation, ICCA

    Google Scholar 

  • Kandepu R, Imsland L, Foss BA, Stiller C, Thorud B, Bolland O (2007b) Modeling and control of a SOFC-GT-based autonomous power system. Energy 32(4):406–417

    Article  Google Scholar 

  • Kandepu R, Foss BA, Imsland L (2008a) Applying the unscented Kalman filter for nonlinear state estimation. J Process Control 18(7):753–768

    Article  Google Scholar 

  • Kandepu R, Imsland L, Foss BA (2008) Constrained state estimation using the unscented Kalman filter. 16th Mediterranean conference on control and automation, pp 1453–1458

    Google Scholar 

  • Khargonekar PP, Rotea MA (1991) Mixed H2 /H Control: a convex optimization approach. IEEE Trans Auto Contr 36(7):824–837

    Article  MathSciNet  MATH  Google Scholar 

  • Laffly E, Pera M-C, Hissel D (2007) Polymer electrolyte membrane fuel cell modeling and parameters estimation for ageing consideration. Proceeding IEEE international symposium on industrial elect, pp 180–185

    Google Scholar 

  • Lee J, Lalk T (1998) Modeling fuel cell stack systems. J Power Sources 73:229–241

    Article  Google Scholar 

  • Mann RF, Amphlett JC, Hooper MAI, Jensen HM, Peppley BA, Roberge RR (2000) Development and application of a generalized steady state electrochemical model for a PEM fuel cell. J Power Sources 86:173–180

    Article  Google Scholar 

  • Master J (2010) Kinetics, catalysis and mechanism of methane steam reforming, Thesis Submitted to the Faculty of the Worcester Polytechnic Institute Department of Chemical Engineering

    Google Scholar 

  • McKay D, Stefanopoulou AG (2004) Parameterization and validation of a lumped parameter diffusion model for fuel cell stack membrane humidity estimation. Proceeding of American control conferences 816–821

    Google Scholar 

  • Methekar RN, Patwardhan SC, Rengaswamy R, Gudi RD, Prasad V (2010) Control of proton exchange membrane fuel cells using data driven state space models. Chem Eng Res Des 88(7):861–874

    Article  Google Scholar 

  • Morner SO, Klein SA (2001) Experimental evaluation of the dynamic behavior of an air-breathing fuel cell stack. J Solar Energy Eng 123:225–231

    Article  Google Scholar 

  • O’Hayre R, Cha SW, Colella W, Prinz FB (2006) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  • Ogata K (2001) Modern control engineering, 4th edn. Prentice Hall, Chapters 11 and 12

    Google Scholar 

  • Pakalapati SR (2006) A new reduced order model for solid oxide fuel cells, Ph.D. Thesis, West Virginia University, Morgantown, WV

    Google Scholar 

  • Pakalapati SR, Yavuz I, Elizalde-Blancas F, Celik I, Shahnam M (2006) Comparison of a multidimensional model with a reduced order pseudo three-dimensional model for simulation of solid oxide fuel cells. Proceeding of the 4th international conference on fuel cell science, engineering and technology, Irvine, CA

    Google Scholar 

  • Pan S, Su H, Wang H, Chu J (2010) The study of joint input and state estimation with Kalman filtering, Trans Inst Meas Control. ISSN: 01423312. doi:10.1177/0142331210361551

  • Pasricha S, Shaw SRD (2006) A dynamic PEM fuel cell model. IEEE Trans Energy Convers 21:484–490

    Article  Google Scholar 

  • Pasricha S, Keppler M, Shaw SR, Nehrir MH (2007) Comparison and identification of static electrical terminal fuel cell models. IEEE Trans Energy Convers 22(3):746–754

    Article  Google Scholar 

  • Pukrushpan JT, Peng H, Stefanopoulou A (2004a) Control-oriented modeling and analysis for automotive fuel cell systems. ASME J Dyn Syst Measure Control 126(1):14–25

    Article  Google Scholar 

  • Pukrushpan JT, Stefanopoulou AG, Peng H (2004b) Control of fuel cell power systems: principles, modeling and analysis and feedback design. In series on advances in industrial control. Springer

    Google Scholar 

  • Pukrushpan JT, Stefanopoulou AG, Peng H (2004c) Control of fuel cell breathing. IEEE Control Syst Mag 30–46

    Google Scholar 

  • Puranik SV, Keyhani A, Khorrami F (2010) State-space modeling of proton exchange membrane fuel cell. IEEE Trans Energy Convers 25(3):804–813

    Article  Google Scholar 

  • Ramousse J, Deseure J, Lottin O, Didierjean S, Maillet D (2005) Modelling of heat, mass and charge transfer in a PEMFC single cell. J Power Sources 145(6):416–427

    Article  Google Scholar 

  • Rowe A, Li X (2001) Mathematical modeling of proton exchange membrane fuel cells. J Power Sources 102:82–96

    Article  Google Scholar 

  • Shan Y, Choe S-Y (2005) A high dynamic PEM fuel cell model with temperature effects. J Power Sources 145:30–39

    Article  Google Scholar 

  • Springer T, Zawodzinski T, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):2334–2342

    Article  Google Scholar 

  • Stanton K (2005) A thermally dependent fuel cell model for power electronics design. Proceeding of IEEE power electronics specialists conference, pp 1647–1651

    Google Scholar 

  • Stiller C, Thorud B, Bolland O, Kandepu R, Imsland L (2006) Control strategy for a solid oxide fuel cell and gas turbine hybrid system. J Power Sources 158(1):303–315

    Article  Google Scholar 

  • Suares GE, Hoo KA (2000) Parameter estimation of a proton-exchange-membrane fuel cell using voltage-current data. Chem Eng Sci 55:2237–2247

    Article  Google Scholar 

  • Thanapalan K, Wang B, Williams JG, Liu GP and Rees D (2008) Modeling, parameter estimation and validation of a 300 W PEM fuel cell system. Proceeding of UKACC’08, international conference on control 2008, Manchester, UK

    Google Scholar 

  • Tumuluri U (2008) Nonlinear state estimation in polymer electrolyte membrane fuel cells. Master’s Thesis, Chemical Engineering, Cleveland State University

    Google Scholar 

  • Turner W, Parten M, Vines D, Jones J, Maxwell T (1999) Modeling a PEM fuel cell for use in a hybrid electric vehicle. IEEE 49th vehicular technology conference 2, pp 1385–1388

    Google Scholar 

  • Uzunoglu M, Alam MS (2006) Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications. IEEE Trans Energy Convers 21:767–775

    Article  Google Scholar 

  • Vahidi A, Stefanopoulou AG, Peng H (2006) Current management in a hybrid fuel cell power system: a model-predictive control approach. IEEE Trans Control Syst Technol 14(6):047–1057

    Article  Google Scholar 

  • Vepa R (2012) Adaptive state estimation of a PEM fuel cell. IEEE Trans Energy Convers 27:457–467

    Article  Google Scholar 

  • Wang C (2004) Fundamental models for fuel cell engineering. Chem Rev 104(10):4727–4766

    Article  Google Scholar 

  • Wang Y, Wang C (2005) Transient analysis of polymer electrolyte fuel cells. J Electrochemica Acta 50:1307–1315

    Article  Google Scholar 

  • Williams JG, Liu GP, Thanapalan K, Rees D (2007) Design and implementation of on-line self-tuning control for PEM fuel cells. Proceeding of EVS-23; sustainability- the future of transportation, Ca. USA, pp 359–375

    Google Scholar 

  • Wohr M, Bolwin K, Schnurnberger W, Fischer M, Neubrand W, Eigenberger G (1998) Dynamic modeling and simulation of a polymer membrane fuel cell including mass transport limitation. Int J Hydrogen Energy 23(3):213–218

    Article  Google Scholar 

  • Xu JG, Froment GF (1989a) Methane steam reforming, methanation and water-gas shift. 1. Intrinsic kinetics. AIChE J 35(1):88–96

    Article  Google Scholar 

  • Xu JG, Froment GF (1989b) Methane steam reforming, 2. Diffusional limitations and reactor simulation. AIChE J 35(1):97–103

    Article  Google Scholar 

  • Xue X, Tang J, Sammes N, Ding Y (2006) Model-based condition monitoring of PEM fuel cell using Hotelling T2 control limit. J Power Sources 162:388–399

    Article  Google Scholar 

  • Yalcinoz T, Alam MS (2008) Dynamic modeling and simulation of air-breathing proton exchange membrane fuel cell. J Power Sources 182:168–174

    Article  Google Scholar 

  • Yang W, Bates B, Fletcher N, Pow R (1998) Control challenges and methodologies in fuel cell vehicle development. SAE paper 98C054

    Google Scholar 

  • Yang CR, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and Zirconium Phosphate/Nafion composite membranes. J Membr Sci 237:145–161

    Article  Google Scholar 

  • Yu D, Yuvarajan S (2004) A novel circuit model for PEM fuel cells. Proceeding of IEEE APEC, Anaheim, Ca. 1:362–366

    Google Scholar 

  • Zhang Z, Huang X, Jiang J, Wu B (2006) An improved dynamic model considering effects of temperature and equivalent internal resistance for PEM fuel cell power models. J Power Sources 161:1062–1068

    Article  Google Scholar 

  • Zhang H, Wang L, Weng S, Su M (2008) Performance research on the compact heat exchange reformer used for high temperature fuel cell systems. J Power Sources 183(1):282–294

    Article  Google Scholar 

  • Zhu H, Kee RJ, Janardhanan VM, Deutschmann O, Goodwin DG (2005) Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. J Electrochem Soc 152:A2427

    Article  Google Scholar 

  • Ziogou C, Voutetakis S, Papadopoulou S, Georgiadis MC (2011) Modeling, simulation and experimental validation of a PEM fuel cell system. Comput Chem Eng 35(9):1886–1900

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Vepa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Vepa, R. (2013). Modelling and Simulation of Fuel Cells. In: Dynamic Modeling, Simulation and Control of Energy Generation. Lecture Notes in Energy, vol 20. Springer, London. https://doi.org/10.1007/978-1-4471-5400-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5400-6_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5399-3

  • Online ISBN: 978-1-4471-5400-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics