Skip to main content

Targeting Inflammatory Processes for Optimization of Cartilage Homeostasis and Repair Techniques

  • Chapter
  • First Online:
Developing Insights in Cartilage Repair

Abstract

The outcome of cartilage repair techniques is often hampered by unwanted ossification (e.g. intralesional osteophytes) at the site of the repaired cartilage. Furthermore, stimulating progenitor cells towards chondrocytes and locking them in their desired state is another important hinge point in cartilage repair techniques. Studying the cartilage formation process by endochondral ossification may provide important clues which further enhance cartilage repair techniques in general and may provide crucial information to prevent unwanted ossification in particular. During endochondral ossification mesenchymal progenitors differentiate into proliferative chondrocytes which gradually further differentiate into hypertrophic chondrocytes and finally die by apoptosis; the remaining scaffold is mineralised towards bone. This process takes place in growth plates, during fracture healing and in part during development of articular cartilage, where the endochondral ossification halts at the chondrogenic phase. While inflammation is generally regarded as a negative factor for joint homeostasis and cartilage development, it is also known that inflammation is the first and essential phase of tissue repair in general and bone fracture healing via endochondral ossifcation indeed also depends on haematoma formation and subsequent inflammatory microenvironment. Recently, a growing body of experimental evidence has been published, showing that inflammatory molecules (e.g. NF-κB, COX-2, iNOS, TNFα, interleukins) and their down-stream pathways are not only associated with cartilage degeneration, but are also crucially involved in the initiation of the chondrogenic differentiation process and regulation of cartilage hypertrophy and mineralization. The data described in these reports suggest that one could use these inflammatory pathways for cartilage regenerative medicine, as the initiation of chondrogenic differentiation is a crucial moment for progenitor cell-based cartilage repair techniques. Furthermore, targeting inflammatory mediators may also provide a potential pharmacological approach to prevent or decrease chondrocyte hypertrophic differentiation and subsequent bone formation (e.g. intralesional osteophytes) in cartilage repair techniques.

This chapter describes important characteristics of hyaline articular cartilage, drawbacks of current cartilage repair techniques, the process of endochondral ossification and how inflammation related molecules are involved in different phases of endochondral ossification. In addition, this chapter discusses how better insight into these pathways may provide novel molecular tools to modulate chondrogenesis in cartilage regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckwalter J, Mankin H. Articular cartilage: tissue design and chondrocyte matrix interactions. Instr Cours Lect. 1998;47:487–504.

    CAS  Google Scholar 

  2. Hasler EM, Herzog W, Wu JZ, et al. Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit Rev Biomed Eng. 1999;27:415–88.

    PubMed  CAS  Google Scholar 

  3. Mankin H, Mow V, Buckwalter J. Articular cartilage structure, composition, and functioned. Rosemont: AAOS; 2000.

    Google Scholar 

  4. Poole AR, Kojima T, Yasuda T, et al. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 2001;(391 Suppl):S26–33.

    Google Scholar 

  5. Moreira-Teixeira LS, Georgi N, Leijten J, et al. Cartilage tissue engineering. Endocr Dev. 2011;21:102–15.

    PubMed  CAS  Google Scholar 

  6. Aydelotte MB, Greenhill RR, Kuettner KE. Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res. 1988;18:223–34.

    PubMed  CAS  Google Scholar 

  7. Schenk R, Eggli P, Hunziker E. Articular cartilage morphologyed. New York: Raven Press; 1986.

    Google Scholar 

  8. Curl WW, Krome J, Gordon ES, et al. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–60.

    PubMed  CAS  Google Scholar 

  9. Hjelle K, Solheim E, Strand T, et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18:730–4.

    PubMed  Google Scholar 

  10. Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117:889–97.

    PubMed  CAS  Google Scholar 

  11. Park Y, Sugimoto M, Watrin A, et al. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage. 2005;13:527–36.

    PubMed  CAS  Google Scholar 

  12. Emans PJ, Surtel DA, Frings EJ, et al. In vivo generation of cartilage from periosteum. Tissue Eng. 2005;11:369–77.

    PubMed  CAS  Google Scholar 

  13. Mankin H, Mow V, Buckwalter J. Articular cartilage repair and osteoarthritised. Rosemont: American Academy of Orthopaedic Surgeons; 2000.

    Google Scholar 

  14. Hunter W. Of the structure and disease of articulating cartilages. 1743. Clin Orthop Relat Res. 1995;317:3–6.

    PubMed  Google Scholar 

  15. Dickhut A, Pelttari K, Janicki P, et al. Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol. 2009;219:219–26.

    PubMed  CAS  Google Scholar 

  16. van Osch GJ, Brittberg M, Dennis JE, et al. Cartilage repair: past and future–lessons for regenerative medicine. J Cell Mol Med. 2009;13:792–810.

    PubMed  Google Scholar 

  17. van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage. 2012;20:223–32.

    PubMed  Google Scholar 

  18. Kamekura S, Kawasaki Y, Hoshi K, et al. Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum. 2006;54:2462–70.

    PubMed  CAS  Google Scholar 

  19. Kawaguchi H. Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells. 2008;25:1–6.

    PubMed  CAS  Google Scholar 

  20. Saito T, Fukai A, Mabuchi A, et al. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med. 2010;16:678–86.

    PubMed  CAS  Google Scholar 

  21. Aglietti P, Buzzi R, Bassi PB, et al. Arthroscopic drilling in juvenile osteochondritis dissecans of the medial femoral condyle. Arthroscopy. 1994;10:286–91.

    PubMed  CAS  Google Scholar 

  22. Altman RD, Kates J, Chun LE, et al. Preliminary observations of chondral abrasion in a canine model. Ann Rheum Dis. 1992;51:1056–62.

    PubMed  CAS  Google Scholar 

  23. Bradley J, Dandy DJ. Results of drilling osteochondritis dissecans before skeletal maturity. J Bone Joint Surg Br. 1989;71:642–4.

    PubMed  CAS  Google Scholar 

  24. Furukawa T, Eyre DR, Koide S, et al. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am. 1980;62:79–89.

    PubMed  CAS  Google Scholar 

  25. Insall J. The Pridie debridement operation for osteoarthritis of the knee. Clin Orthop Relat Res. 1974;101:61–7.

    PubMed  Google Scholar 

  26. Kim HK, Moran ME, Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am. 1991;73:1301–15.

    PubMed  CAS  Google Scholar 

  27. Meachim G, Roberts C. Repair of the joint surface from subarticular tissue in the rabbit knee. J Anat. 1971;109:317–27.

    PubMed  CAS  Google Scholar 

  28. Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am. 1976;58:230–3.

    PubMed  CAS  Google Scholar 

  29. Rae PJ, Noble J. Arthroscopic drilling of osteochondral lesions of the knee. J Bone Joint Surg Br. 1989;71:534.

    PubMed  CAS  Google Scholar 

  30. Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury. 2008;39 Suppl 1:S26–31.

    PubMed  Google Scholar 

  31. Vachon A, Bramlage LR, Gabel AA, et al. Evaluation of the repair process of cartilage defects of the equine third carpal bone with and without subchondral bone perforation. Am J Vet Res. 1986;47:2637–45.

    PubMed  CAS  Google Scholar 

  32. Emans PJ, Pieper J, Hulsbosch MM, et al. Differential cell viability of chondrocytes and progenitor cells in tissue-engineered constructs following implantation into osteochondral defects. Tissue Eng. 2006;12:1699–709.

    PubMed  CAS  Google Scholar 

  33. Gallay SH, Miura Y, Commisso CN, et al. Relationship of donor site to chondrogenic potential of periosteum in vitro. J Orthop Res. 1994;12:515–25.

    PubMed  CAS  Google Scholar 

  34. Iwasaki M, Nakahara H, Nakase T, et al. Bone morphogenetic protein 2 stimulates osteogenesis but does not affect chondrogenesis in osteochondrogenic differentiation of periosteum-derived cells. J Bone Miner Res. 1994;9:1195–204.

    PubMed  CAS  Google Scholar 

  35. Iwasaki M, Nakahara H, Nakata K, et al. Regulation of proliferation and osteochondrogenic differentiation of periosteum-derived cells by transforming growth factor-beta and basic fibroblast growth factor. J Bone Joint Surg Am. 1995;77:543–54.

    PubMed  CAS  Google Scholar 

  36. Iwasaki M, Nakata K, Nakahara H, et al. Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells. Endocrinology. 1993;132:1603–8.

    PubMed  CAS  Google Scholar 

  37. Nakahara H, Bruder SP, Goldberg VM, et al. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res. 1990;259:223–32.

    PubMed  Google Scholar 

  38. Nakahara H, Dennis JE, Bruder SP, et al. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res. 1991;195:492–503.

    PubMed  CAS  Google Scholar 

  39. Nakahara H, Goldberg VM, Caplan AI. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res. 1991;9:465–76.

    PubMed  CAS  Google Scholar 

  40. Nakata K, Nakahara H, Kimura T, et al. Collagen gene expression during chondrogenesis from chick periosteum-derived cells. FEBS Lett. 1992;299:278–82.

    PubMed  CAS  Google Scholar 

  41. O’Driscoll SW, Recklies AD, Poole AR. Chondrogenesis in periosteal explants. An organ culture model for in vitro study. J Bone Joint Surg Am. 1994;76:1042–51.

    PubMed  Google Scholar 

  42. Bouwmeester SJ, Beckers JM, Kuijer R, et al. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop. 1997;21:313–7.

    PubMed  CAS  Google Scholar 

  43. Homminga GN, Bulstra SK, Bouwmeester PS, et al. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br. 1990;72:1003–7.

    PubMed  CAS  Google Scholar 

  44. Homminga GN, Bulstra SK, Kuijer R, et al. Repair of sheep articular cartilage defects with a rabbit costal perichondrial graft. Acta Orthop Scand. 1991;62:415–8.

    PubMed  CAS  Google Scholar 

  45. O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1986;68:1017–35.

    PubMed  Google Scholar 

  46. O’Driscoll SW, Keeley FW, Salter RB. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am. 1988;70:595–606.

    PubMed  Google Scholar 

  47. O’Driscoll SW, Saris DB, Ito Y, et al. The chondrogenic potential of periosteum decreases with age. J Orthop Res. 2001;19:95–103.

    PubMed  Google Scholar 

  48. Skoog T, Johansson SH. The formation of articular cartilage from free perichondrial grafts. Plast Reconstr Surg. 1976;57:1–6.

    PubMed  CAS  Google Scholar 

  49. Vachon A, McIlwraith CW, Trotter GW, et al. Neochondrogenesis in free intra-articular, periosteal, and perichondrial autografts in horses. Am J Vet Res. 1989;50:1787–94.

    PubMed  CAS  Google Scholar 

  50. Zarnett R, Salter RB. Periosteal neochondrogenesis for biologically resurfacing joints: its cellular origin. Can J Surg. 1989;32:171–4.

    PubMed  CAS  Google Scholar 

  51. Easley ME, Scranton Jr PE. Osteochondral autologous transfer system. Foot Ankle Clin. 2003;8:275–90.

    PubMed  Google Scholar 

  52. Gross AE, McKee NH, Pritzker KP, et al. Reconstruction of skeletal deficits at the knee. A comprehensive osteochondral transplant program. Clin Orthop Relat Res. 1983;174:96–106.

    PubMed  Google Scholar 

  53. Horas U, Schnettler R, Pelinkovic D, et al. Osteochondral transplantation versus autogenous chondrocyte transplantation. A prospective comparative clinical study. Chirurg. 2000;71:1090–7.

    PubMed  CAS  Google Scholar 

  54. Onstott AT, Moczo A, Harris NL. Osteochondral autotransfer–newer treatment for chondral defects. AORN J. 2000;71(843–845):848–51.

    Google Scholar 

  55. Convery FR, Meyers MH, Akeson WH. Fresh osteochondral allografting of the femoral condyle. Clin Orthop Relat Res. 1991;273:139–45.

    PubMed  Google Scholar 

  56. Czitrom AA, Keating S, Gross AE. The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Joint Surg Am. 1990;72:574–81.

    PubMed  CAS  Google Scholar 

  57. Garrett JC. Treatment of osteochondral defects of the distal femur with fresh osteochondral allografts: a preliminary report. Arthroscopy. 1986;2:222–6.

    PubMed  CAS  Google Scholar 

  58. Garrett JC. Fresh osteochondral allografts for treatment of articular defects in osteochondritis dissecans of the lateral femoral condyle in adults. Clin Orthop Relat Res. 1994;303:33–7.

    PubMed  Google Scholar 

  59. Garrett JC. Osteochondral allografts for reconstruction of articular defects of the knee. Instr Course Lect. 1998;47:517–22.

    PubMed  CAS  Google Scholar 

  60. Ghazavi MT, Pritzker KP, Davis AM, et al. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br. 1997;79:1008–13.

    PubMed  CAS  Google Scholar 

  61. Gross AE, Aubin P, Cheah HK, et al. A fresh osteochondral allograft alternative. J Arthroplasty. 2002;17:50–3.

    PubMed  Google Scholar 

  62. Brittberg M. Autologous chondrocyte implantation–technique and long-term follow-up. Injury. 2008;39 Suppl 1:S40–9.

    PubMed  Google Scholar 

  63. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.

    PubMed  CAS  Google Scholar 

  64. Brittberg M, Peterson L, Sjogren-Jansson E, et al. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am. 2003;85-A Suppl 3:109–15.

    PubMed  Google Scholar 

  65. Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 2005;87:640–5.

    PubMed  CAS  Google Scholar 

  66. Harris JD, Siston RA, Brophy RH, et al. Failures, re-operations, and complications after autologous chondrocyte implantation–a systematic review. Osteoarthritis Cartilage. 2011;19:779–91.

    PubMed  CAS  Google Scholar 

  67. Pietschmann MF, Niethammer TR, Horng A, et al. The incidence and clinical relevance of graft hypertrophy after matrix-based autologous chondrocyte implantation. Am J Sports Med. 2012;40:68–74.

    PubMed  Google Scholar 

  68. Cole BJ, Farr J, Winalski CS, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.

    PubMed  Google Scholar 

  69. Vasiliadis HS, Danielson B, Ljungberg M, et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med. 2010;38:943–9.

    PubMed  Google Scholar 

  70. Abad V, Meyers JL, Weise M, et al. The role of the resting zone in growth plate chondrogenesis. Endocrinology. 2002;143:1851–7.

    PubMed  CAS  Google Scholar 

  71. Karlsson C, Lindahl A. Articular cartilage stem cell signalling. Arthritis Res Ther. 2009;11:121.

    PubMed  Google Scholar 

  72. Emans PJ, Caron MMJ, van Rhijn LW, et al. Cartilage tissue engineering; lessons learned from periosteum. Tissue Sci Eng. 2011;S2:002.

    Google Scholar 

  73. Medvedev SP, Grigor’eva EV, Shevchenko AI, et al. Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev. 2011;20:1099–112.

    PubMed  CAS  Google Scholar 

  74. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.

    PubMed  CAS  Google Scholar 

  75. Erlebacher A, Filvaroff EH, Gitelman SE, et al. Toward a molecular understanding of skeletal development. Cell. 1995;80:371–8.

    PubMed  CAS  Google Scholar 

  76. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–6.

    PubMed  CAS  Google Scholar 

  77. de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol. 2001;13:721–7.

    PubMed  Google Scholar 

  78. Lefebvre V, Behringer RR, de Crombrugghe B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage. 2001;9(Suppl A):S69–75.

    PubMed  Google Scholar 

  79. Lefebvre V, Smits P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today. 2005;75:200–12.

    PubMed  CAS  Google Scholar 

  80. Akiyama H, Chaboissier MC, Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16:2813–28.

    PubMed  CAS  Google Scholar 

  81. Han Y, Lefebvre V. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol. 2008;28:4999–5013.

    PubMed  CAS  Google Scholar 

  82. Lefebvre V, Huang W, Harley VR, et al. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol. 1997;17:2336–46.

    PubMed  CAS  Google Scholar 

  83. Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998;17:5718–33.

    PubMed  CAS  Google Scholar 

  84. Genzer MA, Bridgewater LC. A Col9a1 enhancer element activated by two interdependent SOX9 dimers. Nucleic Acids Res. 2007;35:1178–86.

    PubMed  CAS  Google Scholar 

  85. Jenkins E, Moss JB, Pace JM, et al. The new collagen gene COL27A1 contains SOX9-responsive enhancer elements. Matrix Biol. 2005;24:177–84.

    PubMed  CAS  Google Scholar 

  86. Oh CD, Maity SN, Lu JF, et al. Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One. 2010;5:e10113.

    PubMed  Google Scholar 

  87. Rentsendorj O, Nagy A, Sinko I, et al. Highly conserved proximal promoter element harbouring paired Sox9-binding sites contributes to the tissue- and developmental stage-specific activity of the matrilin-1 gene. Biochem J. 2005;389:705–16.

    PubMed  CAS  Google Scholar 

  88. Fassler R, Schnegelsberg PN, Dausman J, et al. Mice lacking alpha 1 (IX) collagen develop noninflammatory degenerative joint disease. Proc Natl Acad Sci USA. 1994;91:5070–4.

    PubMed  CAS  Google Scholar 

  89. Li Y, Lacerda DA, Warman ML, et al. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell. 1995;80:423–30.

    PubMed  CAS  Google Scholar 

  90. Nakata K, Ono K, Miyazaki J, et al. Osteoarthritis associated with mild chondrodysplasia in transgenic mice expressing alpha 1(IX) collagen chains with a central deletion. Proc Natl Acad Sci USA. 1993;90:2870–4.

    PubMed  CAS  Google Scholar 

  91. Vikkula M, Mariman EC, Lui VC, et al. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell. 1995;80:431–7.

    PubMed  CAS  Google Scholar 

  92. Eyre D. Collagen of articular cartilage. Arthritis Res. 2002;4:30–5.

    PubMed  CAS  Google Scholar 

  93. Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol. 2001;12:69–78.

    PubMed  CAS  Google Scholar 

  94. Lesperance LM, Gray ML, Burstein D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res. 1992;10:1–13.

    PubMed  CAS  Google Scholar 

  95. Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977;36:121–9.

    PubMed  CAS  Google Scholar 

  96. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.

    PubMed  CAS  Google Scholar 

  97. Lin Z, Willers C, Xu J, et al. The chondrocyte: biology and clinical application. Tissue Eng. 2006;12:1971–84.

    PubMed  CAS  Google Scholar 

  98. Hunziker E. Articular cartilage structure in humans and experimental animalsed. New York: Raven Press; 1992.

    Google Scholar 

  99. Aydelotte M, Kuettner K. Heterogeneity of articular chondrocytes and cartilage matrixed. New York: Marcel Dekker; 1992.

    Google Scholar 

  100. Radin EL, Martin RB, Burr DB, et al. Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res. 1984;2:221–34.

    PubMed  CAS  Google Scholar 

  101. Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech. 1994;28:505–19.

    PubMed  CAS  Google Scholar 

  102. Arnold MA, Kim Y, Czubryt MP, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell. 2007;12:377–89.

    PubMed  CAS  Google Scholar 

  103. Drissi MH, Li X, Sheu TJ, et al. Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J Cell Biochem. 2003;90:1287–98.

    PubMed  CAS  Google Scholar 

  104. Linsenmayer TF, Eavey RD, Schmid TM. Type X collagen: a hypertrophic cartilage-specific molecule. Pathol Immunopathol Res. 1988;7:14–9.

    PubMed  CAS  Google Scholar 

  105. Zheng Q, Zhou G, Morello R, et al. Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol. 2003;162:833–42.

    PubMed  CAS  Google Scholar 

  106. Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8.

    PubMed  CAS  Google Scholar 

  107. Hess J, Porte D, Munz C, et al. AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem. 2001;276:20029–38.

    PubMed  CAS  Google Scholar 

  108. Sato M, Morii E, Komori T, et al. Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene. 1998;17:1517–25.

    PubMed  CAS  Google Scholar 

  109. Beier F, Ali Z, Mok D, et al. TGFbeta and PTHrP control chondrocyte proliferation by activating cyclin D1 expression. Mol Biol Cell. 2001;12:3852–63.

    PubMed  CAS  Google Scholar 

  110. Zhang M, Xie R, Hou W, et al. PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. J Cell Sci. 2009;122:1382–9.

    PubMed  CAS  Google Scholar 

  111. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13:2072–86.

    PubMed  CAS  Google Scholar 

  112. Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol. 1995;172:126–38.

    PubMed  CAS  Google Scholar 

  113. Long F, Zhang XM, Karp S, et al. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development. 2001;128:5099–108.

    PubMed  CAS  Google Scholar 

  114. Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273:613–22.

    PubMed  CAS  Google Scholar 

  115. Yoon BS, Pogue R, Ovchinnikov DA, et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development. 2006;133:4667–78.

    PubMed  CAS  Google Scholar 

  116. Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem. 2004;93:93–103.

    PubMed  CAS  Google Scholar 

  117. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.

    PubMed  CAS  Google Scholar 

  118. Chimal-Monroy J, Bravo-Ruiz MT. Diaz de Leon L. Regulation of chondrocyte differentiation by transforming growth factors beta 1, beta 2, beta 3, and beta 5. Ann N Y Acad Sci. 1996;785:241–4.

    PubMed  CAS  Google Scholar 

  119. Chimal-Monroy J, Diaz de Leon L. Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells. Int J Dev Biol. 1997;41:91–102.

    PubMed  CAS  Google Scholar 

  120. Ferguson CM, Schwarz EM, Puzas JE, et al. Transforming growth factor-beta1 induced alteration of skeletal morphogenesis in vivo. J Orthop Res. 2004;22:687–96.

    PubMed  CAS  Google Scholar 

  121. Ferguson CM, Schwarz EM, Reynolds PR, et al. Smad2 and 3 mediate transforming growth factor-beta1-induced inhibition of chondrocyte maturation. Endocrinology. 2000;141:4728–35.

    PubMed  CAS  Google Scholar 

  122. Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–72.

    PubMed  CAS  Google Scholar 

  123. Lorda-Diez CI, Montero JA, Martinez-Cue C, et al. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem. 2009;284:29988–96.

    PubMed  CAS  Google Scholar 

  124. Feng XH, Zhang Y, Wu RY, et al. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 1998;12:2153–63.

    PubMed  CAS  Google Scholar 

  125. Lagna G, Hata A, Hemmati-Brivanlou A, et al. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 1996;383:832–6.

    PubMed  CAS  Google Scholar 

  126. Elford PR, Graeber M, Ohtsu H, et al. Induction of swelling, synovial hyperplasia and cartilage proteoglycan loss upon intra-articular injection of transforming growth factor beta-2 in the rabbit. Cytokine. 1992;4:232–8.

    PubMed  CAS  Google Scholar 

  127. van Beuningen HM, van der Kraan PM, Arntz OJ, et al. Does TGF-beta protect articular cartilage in vivo? Agents Actions Suppl. 1993;39:127–31.

    PubMed  Google Scholar 

  128. van Beuningen HM, van der Kraan PM, Arntz OJ, et al. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest. 1994;71:279–90.

    PubMed  Google Scholar 

  129. Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage. 2001;9:22–32.

    PubMed  CAS  Google Scholar 

  130. Aberle H, Bauer A, Stappert J, et al. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997;16:3797–804.

    PubMed  CAS  Google Scholar 

  131. Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382:638–42.

    PubMed  CAS  Google Scholar 

  132. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    PubMed  CAS  Google Scholar 

  133. Day TF, Guo X, Garrett-Beal L, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8:739–50.

    PubMed  CAS  Google Scholar 

  134. Dong YF, Soung do Y, Schwarz EM, et al. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol. 2006;208:77–86.

    PubMed  CAS  Google Scholar 

  135. Hill TP, Spater D, Taketo MM, et al. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8:727–38.

    PubMed  CAS  Google Scholar 

  136. Akiyama H. Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol. 2008;18:213–9.

    PubMed  CAS  Google Scholar 

  137. Akiyama H, Chaboissier MC, Behringer RR, et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc Natl Acad Sci USA. 2004;101:6502–7.

    PubMed  CAS  Google Scholar 

  138. Ryu JH, Kim SJ, Kim SH, et al. Regulation of the chondrocyte phenotype by beta-catenin. Development. 2002;129:5541–50.

    PubMed  CAS  Google Scholar 

  139. Topol L, Chen W, Song H, et al. Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J Biol Chem. 2009;284:3323–33.

    PubMed  CAS  Google Scholar 

  140. Yang KG, Saris DB, Verbout AJ, et al. The effect of synovial fluid from injured knee joints on in vitro chondrogenesis. Tissue Eng. 2006;12:2957–64.

    PubMed  CAS  Google Scholar 

  141. Saris DB, Dhert WJ, Verbout AJ. Joint homeostasis. The discrepancy between old and fresh defects in cartilage repair. J Bone Joint Surg Br. 2003;85:1067–76.

    PubMed  CAS  Google Scholar 

  142. Richter W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med. 2009;266:390–405.

    PubMed  CAS  Google Scholar 

  143. Einhorn TA. The science of fracture healing. J Orthop Trauma. 2005;19:S4–6.

    PubMed  Google Scholar 

  144. Gerstenfeld LC, Cullinane DM, Barnes GL, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88:873–84.

    PubMed  CAS  Google Scholar 

  145. Grundnes O, Reikeras O. The importance of the hematoma for fracture healing in rats. Acta Orthop Scand. 1993;64:340–2.

    PubMed  CAS  Google Scholar 

  146. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002;84-A:1032–44.

    PubMed  Google Scholar 

  147. Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008;14(2):179–86.

    PubMed  CAS  Google Scholar 

  148. Einhorn TA, Majeska RJ, Rush EB, et al. The expression of cytokine activity by fracture callus. J Bone Miner Res. 1995;10:1272–81.

    PubMed  CAS  Google Scholar 

  149. Rundle CH, Wang H, Yu H, et al. Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone. 2006;38:521–9.

    PubMed  CAS  Google Scholar 

  150. Pelletier JP, Martel-Pelletier J. The Novartis-ILAR Rheumatology Prize 2001 Osteoarthritis: from molecule to man. Arthritis Res. 2002;4:13–9.

    PubMed  CAS  Google Scholar 

  151. Sofat N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol. 2009;90:463–79.

    PubMed  CAS  Google Scholar 

  152. Gelse K, Soder S, Eger W, et al. Osteophyte development–molecular characterization of differentiation stages. Osteoarthritis Cartilage. 2003;11:141–8.

    PubMed  CAS  Google Scholar 

  153. van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthritis Cartilage. 2007;15:237–44.

    PubMed  Google Scholar 

  154. Blaney Davidson EN, Vitters EL, van Beuningen HM, et al. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor beta-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. Arthritis Rheum. 2007;56:4065–73.

    PubMed  CAS  Google Scholar 

  155. van den Berg WB, van Osch GJ, van der Kraan PM, et al. Cartilage destruction and osteophytes in instability-induced murine osteoarthritis: role of TGF beta in osteophyte formation? Agents Actions. 1993;40:215–9.

    PubMed  Google Scholar 

  156. Feng JQ, Xing L, Zhang JH, et al. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. J Biol Chem. 2003;278:29130–5.

    PubMed  CAS  Google Scholar 

  157. Ushita M, Saito T, Ikeda T, et al. Transcriptional induction of SOX9 by NF-kappaB family member RelA in chondrogenic cells. Osteoarthritis Cartilage. 2009;17:1065–75.

    PubMed  CAS  Google Scholar 

  158. Wu S, Flint JK, Rezvani G, et al. Nuclear factor-kappaB p65 facilitates longitudinal bone growth by inducing growth plate chondrocyte proliferation and differentiation and by preventing apoptosis. J Biol Chem. 2007;282:33698–706.

    PubMed  CAS  Google Scholar 

  159. Fukui N, Ikeda Y, Ohnuki T, et al. Pro-inflammatory cytokine tumor necrosis factor-alpha induces bone morphogenetic protein-2 in chondrocytes via mRNA stabilization and transcriptional up-regulation. J Biol Chem. 2006;281:27229–41.

    PubMed  CAS  Google Scholar 

  160. Fukui N, Zhu Y, Maloney WJ, et al. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. J Bone Joint Surg Am. 2003;85-A Suppl 3:59–66.

    PubMed  Google Scholar 

  161. Aung A, Gupta G, Majid G, et al. Osteoarthritic chondrocyte-secreted morphogens induce chondrogenic differentiation of human mesenchymal stem cells. Arthritis Rheum. 2011;63:148–58.

    PubMed  Google Scholar 

  162. Chen CC, Liao CH, Wang YH, et al. Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction. J Orthop Res. 2012;30:393–400.

    PubMed  CAS  Google Scholar 

  163. Crisostomo PR, Wang Y, Markel TA, et al. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol. 2008;294:C675–82.

    CAS  Google Scholar 

  164. Caron MM, Emans PJ, Surtel DA, et al. Activation of NF-kappaB/p65 facilitates early chondrogenic differentiation during endochondral ossification. PLoS One. 2012;7:e33467.

    PubMed  CAS  Google Scholar 

  165. Zuscik MJ, Hilton MJ, Zhang X, et al. Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest. 2008;118:429–38.

    PubMed  CAS  Google Scholar 

  166. Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage. 2005;13:643–54.

    PubMed  CAS  Google Scholar 

  167. Jallali N, Ridha H, Thrasivoulou C, et al. Modulation of intracellular reactive oxygen species level in chondrocytes by IGF-1, FGF, and TGF-beta1. Connect Tissue Res. 2007;48:149–58.

    PubMed  CAS  Google Scholar 

  168. Morita K, Miyamoto T, Fujita N, et al. Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp Med. 2007;204:1613–23.

    PubMed  CAS  Google Scholar 

  169. Cecil DL, Johnson K, Rediske J, et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol. 2005;175:8296–302.

    PubMed  CAS  Google Scholar 

  170. Handl M, Filova E, Kubala M, et al. Fluorescent advanced glycation end products in the detection of factual stages of cartilage degeneration. Physiol Res. 2007;56:235–42.

    PubMed  CAS  Google Scholar 

  171. Huang CY, Hung LF, Liang CC, et al. COX-2 and iNOS are critical in advanced glycation end product-activated chondrocytes in vitro. Eur J Clin Invest. 2009;39:417–28.

    PubMed  CAS  Google Scholar 

  172. Kume S, Kato S, Yamagishi S, et al. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res. 2005;20:1647–58.

    PubMed  CAS  Google Scholar 

  173. Nah SS, Choi IY, Lee CK, et al. Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes. Rheumatology (Oxford). 2008;47:425–31.

    CAS  Google Scholar 

  174. Welting TJ, Caron MM, Emans PJ, et al. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification. Eur Cell Mater. 2011;22:420–36; discussion 436–27.

    PubMed  CAS  Google Scholar 

  175. Arasapam G, Scherer M, Cool JC, et al. Roles of COX-2 and iNOS in the bony repair of the injured growth plate cartilage. J Cell Biochem. 2006;99:450–61.

    PubMed  CAS  Google Scholar 

  176. Baldik Y, Diwan AD, Appleyard RC, et al. Deletion of iNOS gene impairs mouse fracture healing. Bone. 2005;37:32–6.

    PubMed  CAS  Google Scholar 

  177. Mais A, Klein T, Ullrich V, et al. Prostanoid pattern and iNOS expression during chondrogenic differentiation of human mesenchymal stem cells. J Cell Biochem. 2006;98:798–809.

    PubMed  CAS  Google Scholar 

  178. Itoh SS, Ushita M, Ikeda T, Yano F, Ogata N, Chung U, Nakamura K, Kawaguchi H. NF-kappa B family member RelA/p65, a transcription factor of Sox9, is essential for chondrogenic differentiation and skeletal growth. Osteoarthritis Cartilage. 2009;17:S12–3.

    Google Scholar 

  179. Wu S, Fadoju D, Rezvani G, et al. Stimulatory effects of insulin-like growth factor-I on growth plate chondrogenesis are mediated by nuclear factor-kappaB p65. J Biol Chem. 2008;283:34037–44.

    PubMed  CAS  Google Scholar 

  180. Kishimoto H, Akagi M, Zushi S, et al. Induction of hypertrophic chondrocyte-like phenotypes by oxidized LDL in cultured bovine articular chondrocytes through increase in oxidative stress. Osteoarthritis Cartilage. 2010;18:1284–90.

    PubMed  CAS  Google Scholar 

  181. Nakagawa S, Arai Y, Mazda O, et al. N-acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J Orthop Res. 2010;28:156–63.

    PubMed  CAS  Google Scholar 

  182. Roman-Blas JA, Contreras-Blasco MA, Largo R, et al. Differential effects of the antioxidant n-acetylcysteine on the production of catabolic mediators in IL-1beta-stimulated human osteoarthritic synoviocytes and chondrocytes. Eur J Pharmacol. 2009;623:125–31.

    PubMed  CAS  Google Scholar 

  183. Csaki C, Keshishzadeh N, Fischer K, et al. Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem Pharmacol. 2008;75:677–87.

    PubMed  CAS  Google Scholar 

  184. Liu FC, Hung LF, Wu WL, et al. Chondroprotective effects and mechanisms of resveratrol in advanced glycation end products-stimulated chondrocytes. Arthritis Res Ther. 2010;12:R167.

    PubMed  Google Scholar 

  185. Shakibaei M, Csaki C, Nebrich S, et al. Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem Pharmacol. 2008;76:1426–39.

    PubMed  CAS  Google Scholar 

  186. Chowdhury TT, Bader DL, Lee DA. Dynamic compression counteracts IL-1beta induced iNOS and COX-2 activity by human chondrocytes cultured in agarose constructs. Biorheology. 2006;43:413–29.

    PubMed  Google Scholar 

  187. Fischer J, Dickhut A, Rickert M, et al. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum. 2010;62:2696–706.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Dutch Arthritis Association (grant LLP14) (http://www.reumafonds.nl) and the Dutch Stichting Annafonds|NOREF (grants 07/07 and 08/42) (http://www.annafonds.nl). The authors also thank D.A.M Surtel and A. Cremers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter J. Emans PhD, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Caron, M.M.J., Welting, T.J.M., van Rhijn, L.W., Emans, P.J. (2014). Targeting Inflammatory Processes for Optimization of Cartilage Homeostasis and Repair Techniques. In: Emans, P., Peterson, L. (eds) Developing Insights in Cartilage Repair. Springer, London. https://doi.org/10.1007/978-1-4471-5385-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5385-6_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5384-9

  • Online ISBN: 978-1-4471-5385-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics