Skip to main content

The Specific Development Period

  • Chapter
  • First Online:
Atlas of Heart Anatomy and Development

Abstract

Atria develop mostly from the primitive atrium. Initially there is a unique cavity, which has membranous walls (the endocardial tube). During development, these membranous walls will gain muscle fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gittenberger-de Groot AC, Vrancken Peeters MPFM, Mentink MMT, Gourdie RG, Poelmann RE. Epicardium – derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998;82:1043–52.

    Article  PubMed  CAS  Google Scholar 

  2. Odgers PNB. The formation of the venous valves, the foramen secundum and the septum secundum in the human heart. J Anat. 1935;69(Pt 4):412–22.

    PubMed  CAS  Google Scholar 

  3. Franklin J, Thomas CC. Cardiovascular studies. Springfield: Blackwell Scientific Publications; 1948. xvi + 306 pp.

    Google Scholar 

  4. Moorman AFM, Christoffels MV. Development, genes, and evolution. Physiol Rev. 2003;83:1223–67.

    PubMed  CAS  Google Scholar 

  5. Moorman A, Webb S, Brown NA, Lamers W, Anderson RH. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart. 2003;89:806–14.

    Article  PubMed  Google Scholar 

  6. Licata RH. The human embryonic heart in the ninth week. Am J Anat. 1954;94:73–125.

    Article  PubMed  CAS  Google Scholar 

  7. Van den Hoff MJB, Moorman AFM, Ruijter JM, Lamers WH, Bennington RW, Markwald RR, Wessels A. Myocardialization of the cardiac outflow tract. Dev Biol. 1999;212:477–90.

    Article  PubMed  Google Scholar 

  8. Lamers WH, Virágh S,Wessels A, Moorman AFM, Anderson RH. Formation of the tricuspid valve in the human heart. Circulation. 1995;91:111–21.

    Google Scholar 

  9. Lamers WH, Wessels A, Verbeek FJ, Moorman AF, Viragh S, Wenink AC, Gittenberger-de Groot AC, Anderson RH. New findings concerning ventricular septation in the human heart. Implications for maldevelopment. Circulation. 1992;86:1194–205.

    Article  PubMed  CAS  Google Scholar 

  10. De La Cruz MV, Castillo MM, Villavicenzio G, Valencia A, Moreno-Rodriguez RA. Primitive interventricular septum, its primordium, and its contribution in the definitive interventricular septum: in vivo labelling study in the chick embryo heart. Anat Rec. 1997;247(4):512–20.

    Article  PubMed  Google Scholar 

  11. McCarthy KP, Ho SY, Anderson RH. Categorisation of ventricular septal defects: review of the perimembranous morphology. Paediatr Cardiol. 2000;3:24–40.

    Google Scholar 

  12. Pomares JM, Phelps A, Chápuli R, Wessels A. The contribution of the proepicardium to avian cardiovascular development. Int J Dev Biol. 2001;45(S1):S155–6.

    Google Scholar 

  13. Männer J. The origin and course of coronary vessels: embryological considerations. Cardiol Young. 1998;8:534–5.

    PubMed  Google Scholar 

  14. Männer J, Pérez-Pomares JM, Macías D, Muñoz-Chápuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001;169(2):89–103.

    Article  PubMed  Google Scholar 

  15. Hildreth V, Anderson RH, Henderson DJ. Autonomic innervation of the developing heart: origins and function. Clin Anat. 2009;22:36–46.

    Article  PubMed  Google Scholar 

  16. Van Gils FA. The fibrous skeleton in the human heart: embryological and pathogenetic considerations. Virchows Arch A Pathol Anat Histol. 1981;393(1):61–73.

    Article  PubMed  Google Scholar 

  17. Christoffels CM, Moorman AFM. Development of the cardiac conduction system. why are some regions of the heart more arrhythmogenic than others? Circulation: Arrhythmia and Electrophysiology. 2009;2:195–207.

    Google Scholar 

  18. Jongbloed MRM, Mahtab EAF. Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Scientific World Journal. 2008;8:239–69.

    Article  PubMed  CAS  Google Scholar 

  19. Wessels A, Markwald R. Cardiac morphogenesis and dysmorphogenesis. Normal development. In: Tuan RS, Lo CW (eds.). Methods in Molecular Biology, Vol. 136. Development Biology Protocols. Totowa, NJ: Humana Press; 2000; pp. 239–59.

    Google Scholar 

  20. Peeters H, Devriendt K. Human laterality disorders. Eur J Med Genet. 2006;49(5):349–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Filipoiu, F.M. (2014). The Specific Development Period. In: Atlas of Heart Anatomy and Development. Springer, London. https://doi.org/10.1007/978-1-4471-5382-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5382-5_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5381-8

  • Online ISBN: 978-1-4471-5382-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics