How Fuel Price Elasticity Affects the Economics of Thermal Retrofits

  • Ray Galvin
  • Minna Sunikka-Blank
Part of the Green Energy and Technology book series (GREEN)


Policymakers, their expert advisors and the academic community use mathematical models to evaluate the economic viability and payback time of thermal retrofits. Most of these models have the form of a cost-benefit analysis, where the thermal upgrade costs are compared to the net present value (NPV) of the benefits expected to be received in future years, through fuel savings. However, these models assume that, if the dwelling had not been retrofitted, its occupants would have continued to consume the same amount of heating fuel as previously, despite future fuel price rises. In other words, they fail to include a factor for fuel price elasticity of demand. In this chapter, we show how the mathematics of these models can be modified to include this factor. We then test its effect by assessing the NPV and payback time of a set of thermal retrofit projects on a large housing estate in Germany. Even using conservative values for our parameters, the analysis shows that when price elasticity is taken into account NPV is reduced by around 23%, payback time is lengthened by 15–31 years, and the cost of abated CO2 rises by around 27%.


Fuel price elasticity Payback time Economic viability Cost-benefit analysis Carbon abatement cost 


  1. BMWi (Bundesministerium für Wirtschaft und Technologie) (2011a) Energiedaten: ausgewählte Grafiken; Stand: 15.08.2011a. Accessed 14 Dec 2011
  2. BMWi (Bundesministerium für Wirtschaft und Technologie) (2011b) Zahlen und Fakten: Energidaten: Nationale und Internationale Entwicklung, Bundesministerium für Wirtschaft und Technologie, Referat III C 3. BMWi, Berlin. Accessed 5 Dec 2010
  3. Brechling V, Smith S (1992) The pattern of domestic energy measures among domestic households in the UK. Institute for Fiscal Studies, LondonGoogle Scholar
  4. Enseling A, Hinz E (2006) Energetische Gebäudesanierung und Wirtschaftlichkeit – Eine Untersuchung am Beispiel des ‘Brunckviertels’ in Ludwigshafen. Institut Wohnen und Umwelt GmbH, DarmstadtGoogle Scholar
  5. Feist W (1998) Wirtschaftlichkeitsuntersuchung ausgewählter Energiesparmaßnahmen im Gebäudebestand, Fachinformation PHI-1998/3. Passivhaus Institut, DarmstadtGoogle Scholar
  6. Galvin R, Sunikka-Blank M (2012) Including fuel price elasticity of demand in net present value and payback time calculations of thermal retrofits: case study of German dwellings. Energy Build 50:219–228CrossRefGoogle Scholar
  7. IEA (International Energy Agency) (2008) Promoting energy efficiency investments: case studies in the residential sector. Int Energy Agency, ParisGoogle Scholar
  8. Jakob M (2006) Marginal costs and co-benefits of energy efficiency investments: the case of the Swiss residential sector. Energy Policy 34:172–187CrossRefGoogle Scholar
  9. Kah O, Feist W, Pfluger R, Schnieders J, Kaufmann B, Schulz T, Bastian Z, Vilz A (2008) Bewertung energetischer Anforderungen im Lichte steigender Energiepreise für die EnEV und die KfW-Förderung, BBR-Online-Publikation 18/08. BMVBS/BBR, Herausgeber. Accessed 10 Nov 2011
  10. Leth-Peterson S, Togeby M (2001) Demand for space heating in apartment blocks: measuring effects of policy measures aiming at reducing energy consumption. Energy Econ 23(4):387–403CrossRefGoogle Scholar
  11. Lopes L, Hokoi S, Miura H, Shuhei H (2005) Energy efficiency and energy savings in Japanese residential buildings—research methodology and surveyed results. Energy Build 37:698–706CrossRefGoogle Scholar
  12. Nesbakken R (2002) Energy consumption for space heating: a discrete–continuous approach. Scand J Econ 103(1):165–184CrossRefGoogle Scholar
  13. Papadopoulos A, Theodosiou T, Karatzas K (2002) Feasibility of energy saving renovation measures in urban buildings the impact of energy prices and the acceptable pay back time criterion. Energy Build 34:455–466CrossRefGoogle Scholar
  14. Rehdanz K (2007) Determinants of residential space heating expenditures in Germany. Energy Econ 29:167–182CrossRefGoogle Scholar
  15. Tommerup H, Svendsen S (2006) Energy savings in Danish residential building stock. Energ Buildings 38:618–626CrossRefGoogle Scholar
  16. Verbeek G, Hens H (2005) Energy savings in retrofitted dwellings: economically viable? Energ Buildings 37:747–754Google Scholar
  17. Winkler H, Spalding-Fecher R, Tyani L, Matibe K (2002) Cost benefit analysis of energy efficiency in urban low-cost housing. Dev S Afr 19(5):593–614CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of ArchitectureUniversity of CambridgeCambridgeUK

Personalised recommendations